{"title":"设计和实施用于印度态势监测和安全情报的 EventsKG:开放源情报收集方法","authors":"Hashmy Hassan , Sudheep Elayidom , M.R. Irshad , Christophe Chesneau","doi":"10.1016/j.iswa.2024.200458","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a method to construct and implement an Events Knowledge Graph (EventsKG) for security-related open-source intelligence gathering, focusing on event exploration for situation monitoring in India. The EventsKG is designed to process news articles, extract events of national security significance, and represent them in a consistent and intuitive manner. This method utilizes state-of-the-art natural language understanding techniques and the capabilities of graph databases to extract and organize events. A domain-specific ontology is created for effective storage and retrieval. In addition, we provide a user-friendly dashboard for querying and a complete visualization of events across India. The effectiveness of the EventsKG is assessed through a human evaluation of the information retrieval quality. Our approach contributes to rapid data availability and decision-making through a comprehensive understanding of events, including local events, from every part of India in just a few clicks. The system is evaluated against a manually annotated dataset and by involving human evaluators through a feedback survey, and it has shown good retrieval accuracy. The EventsKG can also be used for other applications such as threat intelligence, incident response, and situational awareness.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"24 ","pages":"Article 200458"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and implementation of EventsKG for situational monitoring and security intelligence in India: An open-source intelligence gathering approach\",\"authors\":\"Hashmy Hassan , Sudheep Elayidom , M.R. Irshad , Christophe Chesneau\",\"doi\":\"10.1016/j.iswa.2024.200458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a method to construct and implement an Events Knowledge Graph (EventsKG) for security-related open-source intelligence gathering, focusing on event exploration for situation monitoring in India. The EventsKG is designed to process news articles, extract events of national security significance, and represent them in a consistent and intuitive manner. This method utilizes state-of-the-art natural language understanding techniques and the capabilities of graph databases to extract and organize events. A domain-specific ontology is created for effective storage and retrieval. In addition, we provide a user-friendly dashboard for querying and a complete visualization of events across India. The effectiveness of the EventsKG is assessed through a human evaluation of the information retrieval quality. Our approach contributes to rapid data availability and decision-making through a comprehensive understanding of events, including local events, from every part of India in just a few clicks. The system is evaluated against a manually annotated dataset and by involving human evaluators through a feedback survey, and it has shown good retrieval accuracy. The EventsKG can also be used for other applications such as threat intelligence, incident response, and situational awareness.</div></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"24 \",\"pages\":\"Article 200458\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305324001327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324001327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and implementation of EventsKG for situational monitoring and security intelligence in India: An open-source intelligence gathering approach
This paper presents a method to construct and implement an Events Knowledge Graph (EventsKG) for security-related open-source intelligence gathering, focusing on event exploration for situation monitoring in India. The EventsKG is designed to process news articles, extract events of national security significance, and represent them in a consistent and intuitive manner. This method utilizes state-of-the-art natural language understanding techniques and the capabilities of graph databases to extract and organize events. A domain-specific ontology is created for effective storage and retrieval. In addition, we provide a user-friendly dashboard for querying and a complete visualization of events across India. The effectiveness of the EventsKG is assessed through a human evaluation of the information retrieval quality. Our approach contributes to rapid data availability and decision-making through a comprehensive understanding of events, including local events, from every part of India in just a few clicks. The system is evaluated against a manually annotated dataset and by involving human evaluators through a feedback survey, and it has shown good retrieval accuracy. The EventsKG can also be used for other applications such as threat intelligence, incident response, and situational awareness.