{"title":"通过自适应合作协同进化算法平衡多技能人机协作的异构装配线","authors":"Bo Tian , Himanshu Kaul , Mukund Janardhanan","doi":"10.1016/j.swevo.2024.101762","DOIUrl":null,"url":null,"abstract":"<div><div>In human-centred manufacturing, deploying collaborative robots (cobots) is recognized as a promising strategy to enhance the inclusiveness and resilience of production systems. Despite notable progress, current production scheduling methods for human-robot collaboration (HRC) still fail to adequately accommodate workforce heterogeneity, significantly reducing their adoption and implementation. To address this gap, we introduce a novel model for the Assembly Line Worker Integration and Balancing Problem considering Multi-skilled Human-Robot Collaboration (ALWIBP-mHRC). This model aims to optimize task scheduling between semi-skilled workers and cobots, aiming to maximize productivity and minimize costs. It features a multi-skilled human-robot collaboration (mHRC) task assignment scheme that selects the optimal assembly/collaboration mode from seven scenarios, based on specific task requirements and resource-skill availability, thus maximizing resource-skill complementarity. To tackle the complexities of this problem, we propose an adaptive multi-objective cooperative co-evolutionary algorithm (a-MOCC) that incorporates a sub-problem decomposition and decoding framework tailored for ALWIBP-mHRC, enhanced by an adaptive evolutionary strategy based on Q-learning (Q-Coevolution). Experimental tests demonstrate the superior performance of the proposed method compared to other established metaheuristic algorithms across various instance sizes, underscoring its effectiveness in enhancing the productivity of production systems for semi-skilled workers. The findings are significant for investment decision-making and resource planning, as they highlight the strategic value of integrating cobots in large-scale heterogeneous workforce production. This work underscores the potential of cobots to mitigate skill gaps in assembly systems, laying the groundwork for future research and industrial strategies focused on enhancing productivity, inclusivity, and adaptability in a dynamically changing labour market.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101762"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing heterogeneous assembly line with multi-skilled human-robot collaboration via Adaptive cooperative co-evolutionary algorithm\",\"authors\":\"Bo Tian , Himanshu Kaul , Mukund Janardhanan\",\"doi\":\"10.1016/j.swevo.2024.101762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In human-centred manufacturing, deploying collaborative robots (cobots) is recognized as a promising strategy to enhance the inclusiveness and resilience of production systems. Despite notable progress, current production scheduling methods for human-robot collaboration (HRC) still fail to adequately accommodate workforce heterogeneity, significantly reducing their adoption and implementation. To address this gap, we introduce a novel model for the Assembly Line Worker Integration and Balancing Problem considering Multi-skilled Human-Robot Collaboration (ALWIBP-mHRC). This model aims to optimize task scheduling between semi-skilled workers and cobots, aiming to maximize productivity and minimize costs. It features a multi-skilled human-robot collaboration (mHRC) task assignment scheme that selects the optimal assembly/collaboration mode from seven scenarios, based on specific task requirements and resource-skill availability, thus maximizing resource-skill complementarity. To tackle the complexities of this problem, we propose an adaptive multi-objective cooperative co-evolutionary algorithm (a-MOCC) that incorporates a sub-problem decomposition and decoding framework tailored for ALWIBP-mHRC, enhanced by an adaptive evolutionary strategy based on Q-learning (Q-Coevolution). Experimental tests demonstrate the superior performance of the proposed method compared to other established metaheuristic algorithms across various instance sizes, underscoring its effectiveness in enhancing the productivity of production systems for semi-skilled workers. The findings are significant for investment decision-making and resource planning, as they highlight the strategic value of integrating cobots in large-scale heterogeneous workforce production. This work underscores the potential of cobots to mitigate skill gaps in assembly systems, laying the groundwork for future research and industrial strategies focused on enhancing productivity, inclusivity, and adaptability in a dynamically changing labour market.</div></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"91 \",\"pages\":\"Article 101762\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224003006\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224003006","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Balancing heterogeneous assembly line with multi-skilled human-robot collaboration via Adaptive cooperative co-evolutionary algorithm
In human-centred manufacturing, deploying collaborative robots (cobots) is recognized as a promising strategy to enhance the inclusiveness and resilience of production systems. Despite notable progress, current production scheduling methods for human-robot collaboration (HRC) still fail to adequately accommodate workforce heterogeneity, significantly reducing their adoption and implementation. To address this gap, we introduce a novel model for the Assembly Line Worker Integration and Balancing Problem considering Multi-skilled Human-Robot Collaboration (ALWIBP-mHRC). This model aims to optimize task scheduling between semi-skilled workers and cobots, aiming to maximize productivity and minimize costs. It features a multi-skilled human-robot collaboration (mHRC) task assignment scheme that selects the optimal assembly/collaboration mode from seven scenarios, based on specific task requirements and resource-skill availability, thus maximizing resource-skill complementarity. To tackle the complexities of this problem, we propose an adaptive multi-objective cooperative co-evolutionary algorithm (a-MOCC) that incorporates a sub-problem decomposition and decoding framework tailored for ALWIBP-mHRC, enhanced by an adaptive evolutionary strategy based on Q-learning (Q-Coevolution). Experimental tests demonstrate the superior performance of the proposed method compared to other established metaheuristic algorithms across various instance sizes, underscoring its effectiveness in enhancing the productivity of production systems for semi-skilled workers. The findings are significant for investment decision-making and resource planning, as they highlight the strategic value of integrating cobots in large-scale heterogeneous workforce production. This work underscores the potential of cobots to mitigate skill gaps in assembly systems, laying the groundwork for future research and industrial strategies focused on enhancing productivity, inclusivity, and adaptability in a dynamically changing labour market.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.