基于推导的数据同化中的自适应参数选择

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2024-11-15 DOI:10.1016/j.cma.2024.117526
Aytekin Çıbık , Rui Fang , William Layton , Farjana Siddiqua
{"title":"基于推导的数据同化中的自适应参数选择","authors":"Aytekin Çıbık ,&nbsp;Rui Fang ,&nbsp;William Layton ,&nbsp;Farjana Siddiqua","doi":"10.1016/j.cma.2024.117526","DOIUrl":null,"url":null,"abstract":"<div><div>Data assimilation combines (imperfect) knowledge of a flow’s physical laws with (noisy, time-lagged, and otherwise imperfect) observations to produce a more accurate prediction of flow statistics. Assimilation by nudging (from 1964), while non-optimal, is easy to implement and its analysis is clear and well-established. Nudging’s uniform in time accuracy has even been established under conditions on the nudging parameter <span><math><mi>χ</mi></math></span> and the density of observational locations, <span><math><mi>H</mi></math></span>, Larios et al. (2019). One remaining issue is that nudging requires the user to select a key parameter. The conditions required for this parameter, derived through á priori (worst case) analysis are severe (Section 2.1 herein) and far beyond those found to be effective in computational experience. One resolution, developed herein, is self-adaptive parameter selection. This report develops, analyzes, tests, and compares two methods of self-adaptation of nudging parameters. One combines analysis and response to local flow behavior. The other is based only on response to flow behavior. The comparison finds both are easily implemented and yields effective values of the nudging parameter much smaller than those of á priori analysis.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117526"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive parameter selection in nudging based data assimilation\",\"authors\":\"Aytekin Çıbık ,&nbsp;Rui Fang ,&nbsp;William Layton ,&nbsp;Farjana Siddiqua\",\"doi\":\"10.1016/j.cma.2024.117526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Data assimilation combines (imperfect) knowledge of a flow’s physical laws with (noisy, time-lagged, and otherwise imperfect) observations to produce a more accurate prediction of flow statistics. Assimilation by nudging (from 1964), while non-optimal, is easy to implement and its analysis is clear and well-established. Nudging’s uniform in time accuracy has even been established under conditions on the nudging parameter <span><math><mi>χ</mi></math></span> and the density of observational locations, <span><math><mi>H</mi></math></span>, Larios et al. (2019). One remaining issue is that nudging requires the user to select a key parameter. The conditions required for this parameter, derived through á priori (worst case) analysis are severe (Section 2.1 herein) and far beyond those found to be effective in computational experience. One resolution, developed herein, is self-adaptive parameter selection. This report develops, analyzes, tests, and compares two methods of self-adaptation of nudging parameters. One combines analysis and response to local flow behavior. The other is based only on response to flow behavior. The comparison finds both are easily implemented and yields effective values of the nudging parameter much smaller than those of á priori analysis.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"433 \",\"pages\":\"Article 117526\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524007801\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524007801","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

数据同化将(不完善的)水流物理规律知识与(噪声、时滞和其他不完善的)观测数据结合起来,以产生更准确的水流统计预测结果。推移同化法(1964 年提出)虽然不是最佳方法,但很容易实现,其分析方法也很明确和成熟。Larios 等人(2019 年)甚至已经确定,在推移参数 χ 和观测点密度 H 的条件下,推移在时间上的精度是一致的。剩下的一个问题是,推算需要用户选择一个关键参数。通过先验(最坏情况)分析得出的该参数所需的条件非常苛刻(本文第 2.1 节),远远超出了计算经验中发现的有效条件。本报告提出的一种解决方案是自适应参数选择。本报告开发、分析、测试并比较了两种自适应推移参数的方法。一种方法结合了分析和对局部流动行为的响应。另一种方法仅基于对流动行为的响应。比较结果表明,这两种方法都很容易实施,而且产生的挤压参数有效值比先验分析法小得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive parameter selection in nudging based data assimilation
Data assimilation combines (imperfect) knowledge of a flow’s physical laws with (noisy, time-lagged, and otherwise imperfect) observations to produce a more accurate prediction of flow statistics. Assimilation by nudging (from 1964), while non-optimal, is easy to implement and its analysis is clear and well-established. Nudging’s uniform in time accuracy has even been established under conditions on the nudging parameter χ and the density of observational locations, H, Larios et al. (2019). One remaining issue is that nudging requires the user to select a key parameter. The conditions required for this parameter, derived through á priori (worst case) analysis are severe (Section 2.1 herein) and far beyond those found to be effective in computational experience. One resolution, developed herein, is self-adaptive parameter selection. This report develops, analyzes, tests, and compares two methods of self-adaptation of nudging parameters. One combines analysis and response to local flow behavior. The other is based only on response to flow behavior. The comparison finds both are easily implemented and yields effective values of the nudging parameter much smaller than those of á priori analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Evolutionary topology optimization with stress control for composite laminates using Tsai-Wu criterion A composite Bayesian optimisation framework for material and structural design Non-intrusive parametric hyper-reduction for nonlinear structural finite element formulations Parallel active learning reliability analysis: A multi-point look-ahead paradigm Neurodevelopmental disorders modeling using isogeometric analysis, dynamic domain expansion and local refinement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1