Ibai Ramirez , Joel Pino , David Pardo , Mikel Sanz , Luis del Rio , Alvaro Ortiz , Kateryna Morozovska , Jose I. Aizpurua
{"title":"基于剩余注意力的物理信息神经网络用于可再生能源发电厂变压器的时空老化评估","authors":"Ibai Ramirez , Joel Pino , David Pardo , Mikel Sanz , Luis del Rio , Alvaro Ortiz , Kateryna Morozovska , Jose I. Aizpurua","doi":"10.1016/j.engappai.2024.109556","DOIUrl":null,"url":null,"abstract":"<div><div>Transformers are crucial for reliable and efficient power system operations, particularly in supporting the integration of renewable energy. Effective monitoring of transformer health is critical to maintain grid stability and performance. Thermal insulation ageing is a key transformer failure mode, which is generally tracked by monitoring the hotspot temperature (HST). However, HST measurement is complex, costly, and often estimated from indirect measurements. Existing HST models focus on space-agnostic thermal models, providing worst-case HST estimates. This article introduces a spatio-temporal model for transformer winding temperature and ageing estimation, which leverages physics-based partial differential equations (PDEs) with data-driven Neural Networks (NN) in a Physics Informed Neural Networks (PINNs) configuration to improve prediction accuracy and acquire spatio-temporal resolution. The computational accuracy of the PINN model is improved through the implementation of the Residual-Based Attention (PINN-RBA) scheme that accelerates the PINN model convergence. The PINN-RBA model is benchmarked against self-adaptive attention schemes and classical vanilla PINN configurations. For the first time, PINN based oil temperature predictions are used to estimate spatio-temporal transformer winding temperature values, validated through PDE numerical solution and fiber optic sensor measurements. Furthermore, the spatio-temporal transformer ageing model is inferred, which supports transformer health management decision-making. Results are validated with a distribution transformer operating on a floating photovoltaic power plant.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109556"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual-based attention Physics-informed Neural Networks for spatio-temporal ageing assessment of transformers operated in renewable power plants\",\"authors\":\"Ibai Ramirez , Joel Pino , David Pardo , Mikel Sanz , Luis del Rio , Alvaro Ortiz , Kateryna Morozovska , Jose I. Aizpurua\",\"doi\":\"10.1016/j.engappai.2024.109556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transformers are crucial for reliable and efficient power system operations, particularly in supporting the integration of renewable energy. Effective monitoring of transformer health is critical to maintain grid stability and performance. Thermal insulation ageing is a key transformer failure mode, which is generally tracked by monitoring the hotspot temperature (HST). However, HST measurement is complex, costly, and often estimated from indirect measurements. Existing HST models focus on space-agnostic thermal models, providing worst-case HST estimates. This article introduces a spatio-temporal model for transformer winding temperature and ageing estimation, which leverages physics-based partial differential equations (PDEs) with data-driven Neural Networks (NN) in a Physics Informed Neural Networks (PINNs) configuration to improve prediction accuracy and acquire spatio-temporal resolution. The computational accuracy of the PINN model is improved through the implementation of the Residual-Based Attention (PINN-RBA) scheme that accelerates the PINN model convergence. The PINN-RBA model is benchmarked against self-adaptive attention schemes and classical vanilla PINN configurations. For the first time, PINN based oil temperature predictions are used to estimate spatio-temporal transformer winding temperature values, validated through PDE numerical solution and fiber optic sensor measurements. Furthermore, the spatio-temporal transformer ageing model is inferred, which supports transformer health management decision-making. Results are validated with a distribution transformer operating on a floating photovoltaic power plant.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"139 \",\"pages\":\"Article 109556\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624017147\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624017147","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Residual-based attention Physics-informed Neural Networks for spatio-temporal ageing assessment of transformers operated in renewable power plants
Transformers are crucial for reliable and efficient power system operations, particularly in supporting the integration of renewable energy. Effective monitoring of transformer health is critical to maintain grid stability and performance. Thermal insulation ageing is a key transformer failure mode, which is generally tracked by monitoring the hotspot temperature (HST). However, HST measurement is complex, costly, and often estimated from indirect measurements. Existing HST models focus on space-agnostic thermal models, providing worst-case HST estimates. This article introduces a spatio-temporal model for transformer winding temperature and ageing estimation, which leverages physics-based partial differential equations (PDEs) with data-driven Neural Networks (NN) in a Physics Informed Neural Networks (PINNs) configuration to improve prediction accuracy and acquire spatio-temporal resolution. The computational accuracy of the PINN model is improved through the implementation of the Residual-Based Attention (PINN-RBA) scheme that accelerates the PINN model convergence. The PINN-RBA model is benchmarked against self-adaptive attention schemes and classical vanilla PINN configurations. For the first time, PINN based oil temperature predictions are used to estimate spatio-temporal transformer winding temperature values, validated through PDE numerical solution and fiber optic sensor measurements. Furthermore, the spatio-temporal transformer ageing model is inferred, which supports transformer health management decision-making. Results are validated with a distribution transformer operating on a floating photovoltaic power plant.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.