{"title":"利用并行变压器和长短期存储器架构进行土壤剖面顺序编码,预测土壤的快速冲击压实效果","authors":"Sompote Youwai, Sirasak Detcheewa","doi":"10.1016/j.engappai.2024.109664","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an advanced deep learning approach for predicting the effectiveness of Rapid Impact Compaction (RIC). The model integrates the focused attention mechanisms of transformer architectures with the sequential data processing capabilities of Long Short-Term Memory (LSTM) networks. Input parameters include the initial soil profile and feature vectors representing the soil's initial state, applied compaction effort, and compaction hammer energy. Utilizing an encoder-decoder framework, the model encodes soil profile information at various depths into tokens, which are subsequently decoded to predict the resulting ground improvement. An ablation study was conducted to assess the significance of each model component. The model's predictive accuracy was validated using field test data, demonstrating a strong correlation with observed outcomes (mean absolute error of 0.42 for test data). Shapley value analysis of the trained model revealed that compaction effort exerted the highest influence on predictions, followed by fine content and fill thickness. The model architecture also demonstrated successful application to alternative RIC case studies, indicating potential generalizability. Furthermore, the model's capability to simulate hypothetical scenarios with varying compaction efforts provides valuable insights for strategic planning and optimization of RIC project designs.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109664"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting rapid impact compaction of soil using a parallel transformer and long short-term memory architecture for sequential soil profile encoding\",\"authors\":\"Sompote Youwai, Sirasak Detcheewa\",\"doi\":\"10.1016/j.engappai.2024.109664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an advanced deep learning approach for predicting the effectiveness of Rapid Impact Compaction (RIC). The model integrates the focused attention mechanisms of transformer architectures with the sequential data processing capabilities of Long Short-Term Memory (LSTM) networks. Input parameters include the initial soil profile and feature vectors representing the soil's initial state, applied compaction effort, and compaction hammer energy. Utilizing an encoder-decoder framework, the model encodes soil profile information at various depths into tokens, which are subsequently decoded to predict the resulting ground improvement. An ablation study was conducted to assess the significance of each model component. The model's predictive accuracy was validated using field test data, demonstrating a strong correlation with observed outcomes (mean absolute error of 0.42 for test data). Shapley value analysis of the trained model revealed that compaction effort exerted the highest influence on predictions, followed by fine content and fill thickness. The model architecture also demonstrated successful application to alternative RIC case studies, indicating potential generalizability. Furthermore, the model's capability to simulate hypothetical scenarios with varying compaction efforts provides valuable insights for strategic planning and optimization of RIC project designs.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"139 \",\"pages\":\"Article 109664\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624018220\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018220","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Predicting rapid impact compaction of soil using a parallel transformer and long short-term memory architecture for sequential soil profile encoding
This study presents an advanced deep learning approach for predicting the effectiveness of Rapid Impact Compaction (RIC). The model integrates the focused attention mechanisms of transformer architectures with the sequential data processing capabilities of Long Short-Term Memory (LSTM) networks. Input parameters include the initial soil profile and feature vectors representing the soil's initial state, applied compaction effort, and compaction hammer energy. Utilizing an encoder-decoder framework, the model encodes soil profile information at various depths into tokens, which are subsequently decoded to predict the resulting ground improvement. An ablation study was conducted to assess the significance of each model component. The model's predictive accuracy was validated using field test data, demonstrating a strong correlation with observed outcomes (mean absolute error of 0.42 for test data). Shapley value analysis of the trained model revealed that compaction effort exerted the highest influence on predictions, followed by fine content and fill thickness. The model architecture also demonstrated successful application to alternative RIC case studies, indicating potential generalizability. Furthermore, the model's capability to simulate hypothetical scenarios with varying compaction efforts provides valuable insights for strategic planning and optimization of RIC project designs.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.