{"title":"基于机器学习的离散时间系统状态观测器在李群上演化","authors":"Soham Shanbhag, Dong Eui Chang","doi":"10.1016/j.engappai.2024.109576","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a machine learning based observer for systems evolving on manifolds is designed such that the state of the observer is restricted to the Lie group on which the system evolves. Designing machine learning based observers for systems evolving on Lie groups using charts would require training a machine learning based observer for each chart of the Lie group, and switching between the trained models based on the state of the system. We propose a novel deep learning based technique whose predictions are restricted to certain measure 0 subsets of the Euclidean space without using charts. Using this network, we design an observer ensuring that the state of the observer is restricted to the Lie group, and predicting the state using only one trained algorithm. The deep learning network predicts an error term on the Lie algebra of the Lie group, uses the map from the Lie algebra to the group, the group operation, and the present state to estimate the state at the next epoch. This approach, being purely data driven, does not require a model of the system. The proposed algorithm provides a novel framework for constraining the output of machine learning networks to certain measure 0 subsets of a Euclidean space without training on each specific chart and without requiring switching. We show the validity of this method using Monte Carlo simulations performed of the rigid body rotation and translation system.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109576"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning based state observer for discrete time systems evolving on Lie groups\",\"authors\":\"Soham Shanbhag, Dong Eui Chang\",\"doi\":\"10.1016/j.engappai.2024.109576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a machine learning based observer for systems evolving on manifolds is designed such that the state of the observer is restricted to the Lie group on which the system evolves. Designing machine learning based observers for systems evolving on Lie groups using charts would require training a machine learning based observer for each chart of the Lie group, and switching between the trained models based on the state of the system. We propose a novel deep learning based technique whose predictions are restricted to certain measure 0 subsets of the Euclidean space without using charts. Using this network, we design an observer ensuring that the state of the observer is restricted to the Lie group, and predicting the state using only one trained algorithm. The deep learning network predicts an error term on the Lie algebra of the Lie group, uses the map from the Lie algebra to the group, the group operation, and the present state to estimate the state at the next epoch. This approach, being purely data driven, does not require a model of the system. The proposed algorithm provides a novel framework for constraining the output of machine learning networks to certain measure 0 subsets of a Euclidean space without training on each specific chart and without requiring switching. We show the validity of this method using Monte Carlo simulations performed of the rigid body rotation and translation system.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"139 \",\"pages\":\"Article 109576\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624017342\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624017342","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Machine learning based state observer for discrete time systems evolving on Lie groups
In this paper, a machine learning based observer for systems evolving on manifolds is designed such that the state of the observer is restricted to the Lie group on which the system evolves. Designing machine learning based observers for systems evolving on Lie groups using charts would require training a machine learning based observer for each chart of the Lie group, and switching between the trained models based on the state of the system. We propose a novel deep learning based technique whose predictions are restricted to certain measure 0 subsets of the Euclidean space without using charts. Using this network, we design an observer ensuring that the state of the observer is restricted to the Lie group, and predicting the state using only one trained algorithm. The deep learning network predicts an error term on the Lie algebra of the Lie group, uses the map from the Lie algebra to the group, the group operation, and the present state to estimate the state at the next epoch. This approach, being purely data driven, does not require a model of the system. The proposed algorithm provides a novel framework for constraining the output of machine learning networks to certain measure 0 subsets of a Euclidean space without training on each specific chart and without requiring switching. We show the validity of this method using Monte Carlo simulations performed of the rigid body rotation and translation system.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.