Ying Guo , Chang Tian , Jie Liu , Chong Di , Keqing Ning
{"title":"HADT:使用混合注意力密集连接变压器网络进行图像超分辨率修复","authors":"Ying Guo , Chang Tian , Jie Liu , Chong Di , Keqing Ning","doi":"10.1016/j.neucom.2024.128790","DOIUrl":null,"url":null,"abstract":"<div><div>Image super-resolution (SR) plays a vital role in vision tasks, in which Transformer-based methods outperform conventional convolutional neural networks. Existing work usually uses residual linking to improve the performance, but this type of linking provides limited information transfer within the block. Also, existing work usually restricts the self-attention computation to a single window to improve feature extraction. This means transformer-based networks can only use feature information within a limited spatial range. To handle the challenge, this paper proposes a novel Hybrid Attention-Dense Connected Transformer Network (HADT) to utilize the potential feature information better. HADT is constructed by stacking an attentional transformer block (ATB), which contains an Effective Dense Transformer Block (EDTB) and a Hybrid Attention Block (HAB). EDTB combines dense connectivity and swin-transformer to enhance feature transfer and improve model representation, and meanwhile, HAB is used for cross-window information interaction and joint modeling of features for better visualization. Based on the experiments, our method is effective on SR tasks with magnification factors of 2, 3, and 4. For example, using the Urban100 dataset in an experiment with an amplification factor of 4 our method has a PSNR value that is 0.15 dB higher than the previous method and reconstructs a more detailed texture.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128790"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HADT: Image super-resolution restoration using Hybrid Attention-Dense Connected Transformer Networks\",\"authors\":\"Ying Guo , Chang Tian , Jie Liu , Chong Di , Keqing Ning\",\"doi\":\"10.1016/j.neucom.2024.128790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Image super-resolution (SR) plays a vital role in vision tasks, in which Transformer-based methods outperform conventional convolutional neural networks. Existing work usually uses residual linking to improve the performance, but this type of linking provides limited information transfer within the block. Also, existing work usually restricts the self-attention computation to a single window to improve feature extraction. This means transformer-based networks can only use feature information within a limited spatial range. To handle the challenge, this paper proposes a novel Hybrid Attention-Dense Connected Transformer Network (HADT) to utilize the potential feature information better. HADT is constructed by stacking an attentional transformer block (ATB), which contains an Effective Dense Transformer Block (EDTB) and a Hybrid Attention Block (HAB). EDTB combines dense connectivity and swin-transformer to enhance feature transfer and improve model representation, and meanwhile, HAB is used for cross-window information interaction and joint modeling of features for better visualization. Based on the experiments, our method is effective on SR tasks with magnification factors of 2, 3, and 4. For example, using the Urban100 dataset in an experiment with an amplification factor of 4 our method has a PSNR value that is 0.15 dB higher than the previous method and reconstructs a more detailed texture.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"614 \",\"pages\":\"Article 128790\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224015613\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015613","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
HADT: Image super-resolution restoration using Hybrid Attention-Dense Connected Transformer Networks
Image super-resolution (SR) plays a vital role in vision tasks, in which Transformer-based methods outperform conventional convolutional neural networks. Existing work usually uses residual linking to improve the performance, but this type of linking provides limited information transfer within the block. Also, existing work usually restricts the self-attention computation to a single window to improve feature extraction. This means transformer-based networks can only use feature information within a limited spatial range. To handle the challenge, this paper proposes a novel Hybrid Attention-Dense Connected Transformer Network (HADT) to utilize the potential feature information better. HADT is constructed by stacking an attentional transformer block (ATB), which contains an Effective Dense Transformer Block (EDTB) and a Hybrid Attention Block (HAB). EDTB combines dense connectivity and swin-transformer to enhance feature transfer and improve model representation, and meanwhile, HAB is used for cross-window information interaction and joint modeling of features for better visualization. Based on the experiments, our method is effective on SR tasks with magnification factors of 2, 3, and 4. For example, using the Urban100 dataset in an experiment with an amplification factor of 4 our method has a PSNR value that is 0.15 dB higher than the previous method and reconstructs a more detailed texture.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.