HADT:使用混合注意力密集连接变压器网络进行图像超分辨率修复

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-10-26 DOI:10.1016/j.neucom.2024.128790
Ying Guo , Chang Tian , Jie Liu , Chong Di , Keqing Ning
{"title":"HADT:使用混合注意力密集连接变压器网络进行图像超分辨率修复","authors":"Ying Guo ,&nbsp;Chang Tian ,&nbsp;Jie Liu ,&nbsp;Chong Di ,&nbsp;Keqing Ning","doi":"10.1016/j.neucom.2024.128790","DOIUrl":null,"url":null,"abstract":"<div><div>Image super-resolution (SR) plays a vital role in vision tasks, in which Transformer-based methods outperform conventional convolutional neural networks. Existing work usually uses residual linking to improve the performance, but this type of linking provides limited information transfer within the block. Also, existing work usually restricts the self-attention computation to a single window to improve feature extraction. This means transformer-based networks can only use feature information within a limited spatial range. To handle the challenge, this paper proposes a novel Hybrid Attention-Dense Connected Transformer Network (HADT) to utilize the potential feature information better. HADT is constructed by stacking an attentional transformer block (ATB), which contains an Effective Dense Transformer Block (EDTB) and a Hybrid Attention Block (HAB). EDTB combines dense connectivity and swin-transformer to enhance feature transfer and improve model representation, and meanwhile, HAB is used for cross-window information interaction and joint modeling of features for better visualization. Based on the experiments, our method is effective on SR tasks with magnification factors of 2, 3, and 4. For example, using the Urban100 dataset in an experiment with an amplification factor of 4 our method has a PSNR value that is 0.15 dB higher than the previous method and reconstructs a more detailed texture.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128790"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HADT: Image super-resolution restoration using Hybrid Attention-Dense Connected Transformer Networks\",\"authors\":\"Ying Guo ,&nbsp;Chang Tian ,&nbsp;Jie Liu ,&nbsp;Chong Di ,&nbsp;Keqing Ning\",\"doi\":\"10.1016/j.neucom.2024.128790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Image super-resolution (SR) plays a vital role in vision tasks, in which Transformer-based methods outperform conventional convolutional neural networks. Existing work usually uses residual linking to improve the performance, but this type of linking provides limited information transfer within the block. Also, existing work usually restricts the self-attention computation to a single window to improve feature extraction. This means transformer-based networks can only use feature information within a limited spatial range. To handle the challenge, this paper proposes a novel Hybrid Attention-Dense Connected Transformer Network (HADT) to utilize the potential feature information better. HADT is constructed by stacking an attentional transformer block (ATB), which contains an Effective Dense Transformer Block (EDTB) and a Hybrid Attention Block (HAB). EDTB combines dense connectivity and swin-transformer to enhance feature transfer and improve model representation, and meanwhile, HAB is used for cross-window information interaction and joint modeling of features for better visualization. Based on the experiments, our method is effective on SR tasks with magnification factors of 2, 3, and 4. For example, using the Urban100 dataset in an experiment with an amplification factor of 4 our method has a PSNR value that is 0.15 dB higher than the previous method and reconstructs a more detailed texture.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"614 \",\"pages\":\"Article 128790\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224015613\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015613","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

图像超分辨率(SR)在视觉任务中起着至关重要的作用,在这方面,基于变换器的方法优于传统的卷积神经网络。现有研究通常使用残差链接来提高性能,但这种链接方式在块内提供的信息传递有限。此外,现有研究通常将自注意计算限制在单个窗口内,以提高特征提取效果。这意味着基于变压器的网络只能使用有限空间范围内的特征信息。为了应对这一挑战,本文提出了一种新颖的混合注意力密集连接变压器网络(HADT),以更好地利用潜在的特征信息。HADT 是通过堆叠注意力变压器块(ATB)构建的,ATB 包含一个有效密集变压器块(EDTB)和一个混合注意力块(HAB)。EDTB 结合了密集连接和swin-transformer,以增强特征转移和改进模型表示,同时,HAB 用于跨窗口信息交互和特征联合建模,以获得更好的可视化效果。根据实验结果,我们的方法对放大系数为 2、3 和 4 的 SR 任务非常有效。例如,在放大系数为 4 的实验中,使用 Urban100 数据集,我们的方法的 PSNR 值比之前的方法高出 0.15 dB,而且重建的纹理更加细致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HADT: Image super-resolution restoration using Hybrid Attention-Dense Connected Transformer Networks
Image super-resolution (SR) plays a vital role in vision tasks, in which Transformer-based methods outperform conventional convolutional neural networks. Existing work usually uses residual linking to improve the performance, but this type of linking provides limited information transfer within the block. Also, existing work usually restricts the self-attention computation to a single window to improve feature extraction. This means transformer-based networks can only use feature information within a limited spatial range. To handle the challenge, this paper proposes a novel Hybrid Attention-Dense Connected Transformer Network (HADT) to utilize the potential feature information better. HADT is constructed by stacking an attentional transformer block (ATB), which contains an Effective Dense Transformer Block (EDTB) and a Hybrid Attention Block (HAB). EDTB combines dense connectivity and swin-transformer to enhance feature transfer and improve model representation, and meanwhile, HAB is used for cross-window information interaction and joint modeling of features for better visualization. Based on the experiments, our method is effective on SR tasks with magnification factors of 2, 3, and 4. For example, using the Urban100 dataset in an experiment with an amplification factor of 4 our method has a PSNR value that is 0.15 dB higher than the previous method and reconstructs a more detailed texture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Extending the learning using privileged information paradigm to logistic regression DoA-ViT: Dual-objective Affine Vision Transformer for Data Insufficiency CNN explanation methods for ordinal regression tasks Superpixel semantics representation and pre-training for vision–language tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1