生物质基柠檬酸和尿素制备的碳纳米管的结构演化、微波吸收性能和原位复合

IF 5.7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Surfaces and Interfaces Pub Date : 2024-11-07 DOI:10.1016/j.surfin.2024.105408
Cong Wang , Jingwei Li , Qingqing Wang , Jinze Cao , Jianjun Li , Liuyang Chen , Haibao Lu , Xiaodong He
{"title":"生物质基柠檬酸和尿素制备的碳纳米管的结构演化、微波吸收性能和原位复合","authors":"Cong Wang ,&nbsp;Jingwei Li ,&nbsp;Qingqing Wang ,&nbsp;Jinze Cao ,&nbsp;Jianjun Li ,&nbsp;Liuyang Chen ,&nbsp;Haibao Lu ,&nbsp;Xiaodong He","doi":"10.1016/j.surfin.2024.105408","DOIUrl":null,"url":null,"abstract":"<div><div>The microscopic characteristics of carbon nanotube play a fundamental role in determining the macroscopic features. This research focuses on synthetic studies toward the structural evolution and microwave absorption enhancement of carbon nanotubes from biomass-based citric acid small organic molecules reaction system. When Co/Fe dual metal catalysts are used, self-entangled carbon nanotube networks in all three dimensions like instant noodles form. Polydimethylsiloxane (PDMS) is introduced inspired by “growth-from-template” strategy, the green hair algae-like morphology with bamboo-like structure is revealed in the carbon nanotubes. Twisted carbon nanotube yarn structure together with quaternary structure of protein-like carbon nanotube are both observed. Carbon microstructural evolution is investigated in bagasse-based ultralight composite. Toward the incident microwaves, in-situ synthesized CNTs-rGO composite has substantially enhanced reflection loss performance. The strongest reflection loss is -44.9 dB at 12.6 GHz with the absorber thickness of only 2 mm. And the effective microwave absorption bandwidth can reach 6.1 GHz covering a frequency range of 11.5–17.6 with the absorber thickness of only 1.6 mm.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105408"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural evolution, microwave absorption performance and in-situ compositing of carbon nanotube prepared from biomass-based citric acid and urea\",\"authors\":\"Cong Wang ,&nbsp;Jingwei Li ,&nbsp;Qingqing Wang ,&nbsp;Jinze Cao ,&nbsp;Jianjun Li ,&nbsp;Liuyang Chen ,&nbsp;Haibao Lu ,&nbsp;Xiaodong He\",\"doi\":\"10.1016/j.surfin.2024.105408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The microscopic characteristics of carbon nanotube play a fundamental role in determining the macroscopic features. This research focuses on synthetic studies toward the structural evolution and microwave absorption enhancement of carbon nanotubes from biomass-based citric acid small organic molecules reaction system. When Co/Fe dual metal catalysts are used, self-entangled carbon nanotube networks in all three dimensions like instant noodles form. Polydimethylsiloxane (PDMS) is introduced inspired by “growth-from-template” strategy, the green hair algae-like morphology with bamboo-like structure is revealed in the carbon nanotubes. Twisted carbon nanotube yarn structure together with quaternary structure of protein-like carbon nanotube are both observed. Carbon microstructural evolution is investigated in bagasse-based ultralight composite. Toward the incident microwaves, in-situ synthesized CNTs-rGO composite has substantially enhanced reflection loss performance. The strongest reflection loss is -44.9 dB at 12.6 GHz with the absorber thickness of only 2 mm. And the effective microwave absorption bandwidth can reach 6.1 GHz covering a frequency range of 11.5–17.6 with the absorber thickness of only 1.6 mm.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"55 \",\"pages\":\"Article 105408\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024015645\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015645","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

碳纳米管的微观特征对其宏观特征起着决定性作用。本研究重点关注生物质柠檬酸小有机分子反应体系中碳纳米管的结构演变和微波吸收增强的合成研究。当使用 Co/Fe 双金属催化剂时,会形成像方便面一样的三维自缠结碳纳米管网络。在 "从模板生长 "策略的启发下,引入聚二甲基硅氧烷(PDMS),碳纳米管呈现出竹节状结构的绿毛藻形态。在碳纳米管中观察到了扭曲的碳纳米管纱线结构和类蛋白碳纳米管的四元结构。研究了甘蔗渣基超轻复合材料中碳微观结构的演变。对于入射微波,原位合成的 CNTs-rGO 复合材料具有显著增强的反射损耗性能。在吸收体厚度仅为 2 毫米的情况下,12.6 GHz 时的最强反射损耗为 -44.9 dB。在吸收体厚度仅为 1.6 毫米的情况下,有效微波吸收带宽可达 6.1 GHz,覆盖 11.5-17.6 的频率范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural evolution, microwave absorption performance and in-situ compositing of carbon nanotube prepared from biomass-based citric acid and urea
The microscopic characteristics of carbon nanotube play a fundamental role in determining the macroscopic features. This research focuses on synthetic studies toward the structural evolution and microwave absorption enhancement of carbon nanotubes from biomass-based citric acid small organic molecules reaction system. When Co/Fe dual metal catalysts are used, self-entangled carbon nanotube networks in all three dimensions like instant noodles form. Polydimethylsiloxane (PDMS) is introduced inspired by “growth-from-template” strategy, the green hair algae-like morphology with bamboo-like structure is revealed in the carbon nanotubes. Twisted carbon nanotube yarn structure together with quaternary structure of protein-like carbon nanotube are both observed. Carbon microstructural evolution is investigated in bagasse-based ultralight composite. Toward the incident microwaves, in-situ synthesized CNTs-rGO composite has substantially enhanced reflection loss performance. The strongest reflection loss is -44.9 dB at 12.6 GHz with the absorber thickness of only 2 mm. And the effective microwave absorption bandwidth can reach 6.1 GHz covering a frequency range of 11.5–17.6 with the absorber thickness of only 1.6 mm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
期刊最新文献
Enhancing effects of edge-N in Pt-based carbon support on hydrogen evolution reaction Tuning of magnetic and transport behavior in La0.67Sr0.33MnO3/Pr2Ir2O7 bilayer: Possible role of interfacial Dzyaloshinskii–Moriya interactions SiO2/Si interface defects in HKMG stack fabrication Ultrasonic-assisted strategy to enhance electrocatalytic performance of CoNi N-doped carbon catalyst in alkaline oxygen reduction reaction and zinc-air batteries Understanding the role of sodium lignosulphonate on obstructing the aggregation of fine serpentine particles on to the hydrophobized pyrite surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1