银纳米图案薄膜上量子点内棒的各向异性荧光表面淬灭

IF 5.7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Surfaces and Interfaces Pub Date : 2024-11-09 DOI:10.1016/j.surfin.2024.105416
Jie Zhou , Zhuonan Liu , Peiquan Yu , Weihao Wan , Ruotong Chen , Jianbo Xiao , Yujie Tao , Zhishuai Zheng , Yucheng Wang , Ziang Liu , Xiaoping Huang
{"title":"银纳米图案薄膜上量子点内棒的各向异性荧光表面淬灭","authors":"Jie Zhou ,&nbsp;Zhuonan Liu ,&nbsp;Peiquan Yu ,&nbsp;Weihao Wan ,&nbsp;Ruotong Chen ,&nbsp;Jianbo Xiao ,&nbsp;Yujie Tao ,&nbsp;Zhishuai Zheng ,&nbsp;Yucheng Wang ,&nbsp;Ziang Liu ,&nbsp;Xiaoping Huang","doi":"10.1016/j.surfin.2024.105416","DOIUrl":null,"url":null,"abstract":"<div><div>Semiconductor quantum dot-in-rods (QDIRs) have served in the broad applications such as luminescent applications, sensor technology, quantum information processing, due to their polarized emission and polarized absorption characteristics. The localized surface plasmon resonance (LSPR) characteristics of the noble metal nanostructures can regulate the fluorescence intensity by controlling the radiation and non-radiation channels of fluorescent substances. However, the reports on the fluorescence surface quenching of QDIRs by plasmonic nanoparticles (NPs) are very rare. Herein, we propose a new method to realize QDIRs orientation, as well as the fluorescence intensity can be regulated. The effect of Ag nanopatterned film on the fluorescence surface quenching of QDIRs is discussed from both theoretical and experimental perspectives. Generally, the direct combination of Ag nanopatterned film and QDIRs results in 75% fluorescence surface quenching. Through FDTD simulation, we further analyzed the modulation of fluorescence intensity of the dipole source by the Ag nanopatterned film. This work will be useful for the development of QDIRs in the future.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105416"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic fluorescence surface quenching of quantum dot-in-rods on silver nanopatterned film\",\"authors\":\"Jie Zhou ,&nbsp;Zhuonan Liu ,&nbsp;Peiquan Yu ,&nbsp;Weihao Wan ,&nbsp;Ruotong Chen ,&nbsp;Jianbo Xiao ,&nbsp;Yujie Tao ,&nbsp;Zhishuai Zheng ,&nbsp;Yucheng Wang ,&nbsp;Ziang Liu ,&nbsp;Xiaoping Huang\",\"doi\":\"10.1016/j.surfin.2024.105416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Semiconductor quantum dot-in-rods (QDIRs) have served in the broad applications such as luminescent applications, sensor technology, quantum information processing, due to their polarized emission and polarized absorption characteristics. The localized surface plasmon resonance (LSPR) characteristics of the noble metal nanostructures can regulate the fluorescence intensity by controlling the radiation and non-radiation channels of fluorescent substances. However, the reports on the fluorescence surface quenching of QDIRs by plasmonic nanoparticles (NPs) are very rare. Herein, we propose a new method to realize QDIRs orientation, as well as the fluorescence intensity can be regulated. The effect of Ag nanopatterned film on the fluorescence surface quenching of QDIRs is discussed from both theoretical and experimental perspectives. Generally, the direct combination of Ag nanopatterned film and QDIRs results in 75% fluorescence surface quenching. Through FDTD simulation, we further analyzed the modulation of fluorescence intensity of the dipole source by the Ag nanopatterned film. This work will be useful for the development of QDIRs in the future.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"55 \",\"pages\":\"Article 105416\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024015724\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015724","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

半导体量子点棒(QDIRs)因其极化发射和极化吸收特性,在发光应用、传感器技术、量子信息处理等领域有着广泛的应用。贵金属纳米结构的局部表面等离子体共振(LSPR)特性可以通过控制荧光物质的辐射和非辐射通道来调节荧光强度。然而,关于质子纳米粒子(NPs)对 QDIRs 荧光表面淬灭的报道却非常罕见。在此,我们提出了一种实现 QDIRs 定向以及荧光强度可调的新方法。我们从理论和实验两个角度讨论了银纳米图案膜对 QDIRs 荧光表面淬灭的影响。一般来说,银纳米图案膜与 QDIRs 直接结合会导致 75% 的荧光表面淬灭。通过 FDTD 仿真,我们进一步分析了银纳米图案薄膜对偶极源荧光强度的调制。这项工作将有助于未来 QDIRs 的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anisotropic fluorescence surface quenching of quantum dot-in-rods on silver nanopatterned film
Semiconductor quantum dot-in-rods (QDIRs) have served in the broad applications such as luminescent applications, sensor technology, quantum information processing, due to their polarized emission and polarized absorption characteristics. The localized surface plasmon resonance (LSPR) characteristics of the noble metal nanostructures can regulate the fluorescence intensity by controlling the radiation and non-radiation channels of fluorescent substances. However, the reports on the fluorescence surface quenching of QDIRs by plasmonic nanoparticles (NPs) are very rare. Herein, we propose a new method to realize QDIRs orientation, as well as the fluorescence intensity can be regulated. The effect of Ag nanopatterned film on the fluorescence surface quenching of QDIRs is discussed from both theoretical and experimental perspectives. Generally, the direct combination of Ag nanopatterned film and QDIRs results in 75% fluorescence surface quenching. Through FDTD simulation, we further analyzed the modulation of fluorescence intensity of the dipole source by the Ag nanopatterned film. This work will be useful for the development of QDIRs in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
期刊最新文献
Understanding the role of sodium lignosulphonate on obstructing the aggregation of fine serpentine particles on to the hydrophobized pyrite surface Hydrophobic/hydrophilic surfaces constructed using laser spraying: A new route Anisotropic fluorescence surface quenching of quantum dot-in-rods on silver nanopatterned film Three-dimensionally assembled polyelectrolyte multilayers-functionalized silica nanowire membrane for highly-efficient adsorptive separation of copper ions from water Releasing charge transport barriers at low bias in perpendicularly aligned 2D halide perovskite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1