{"title":"促进多样性推荐的生成和判别模型","authors":"Yuli Liu","doi":"10.1016/j.is.2024.102488","DOIUrl":null,"url":null,"abstract":"<div><div>Diversity-promoting recommender systems with the goal of recommending diverse and relevant results to users, have received significant attention. However, current studies often face a trade-off: they either recommend highly accurate but homogeneous items or boost diversity at the cost of relevance, making it challenging for users to find truly satisfying recommendations that meet both their obvious and potential needs. To overcome this competitive trade-off, we introduce a unified framework that simultaneously leverages a discriminative model and a generative model. This approach allows us to adjust the focus of learning dynamically. Specifically, our framework uses Variational Graph Auto-Encoders to enhance the diversity of recommendations, while Graph Convolution Networks are employed to ensure high accuracy in predicting user preferences. This dual focus enables our system to deliver recommendations that are both diverse and closely aligned with user interests. Inspired by the quality <em>vs.</em> diversity decomposition of Determinantal Point Process (DPP) kernel, we design the DPP likelihood-based loss function as the joint modeling loss. Extensive experiments on three real-world datasets, demonstrating that the unified framework goes beyond quality-diversity trade-off, <em>i.e.</em>, instead of sacrificing accuracy for promoting diversity, the joint modeling actually boosts both metrics.</div></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"128 ","pages":"Article 102488"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generative and discriminative model for diversity-promoting recommendation\",\"authors\":\"Yuli Liu\",\"doi\":\"10.1016/j.is.2024.102488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diversity-promoting recommender systems with the goal of recommending diverse and relevant results to users, have received significant attention. However, current studies often face a trade-off: they either recommend highly accurate but homogeneous items or boost diversity at the cost of relevance, making it challenging for users to find truly satisfying recommendations that meet both their obvious and potential needs. To overcome this competitive trade-off, we introduce a unified framework that simultaneously leverages a discriminative model and a generative model. This approach allows us to adjust the focus of learning dynamically. Specifically, our framework uses Variational Graph Auto-Encoders to enhance the diversity of recommendations, while Graph Convolution Networks are employed to ensure high accuracy in predicting user preferences. This dual focus enables our system to deliver recommendations that are both diverse and closely aligned with user interests. Inspired by the quality <em>vs.</em> diversity decomposition of Determinantal Point Process (DPP) kernel, we design the DPP likelihood-based loss function as the joint modeling loss. Extensive experiments on three real-world datasets, demonstrating that the unified framework goes beyond quality-diversity trade-off, <em>i.e.</em>, instead of sacrificing accuracy for promoting diversity, the joint modeling actually boosts both metrics.</div></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"128 \",\"pages\":\"Article 102488\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437924001467\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924001467","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A generative and discriminative model for diversity-promoting recommendation
Diversity-promoting recommender systems with the goal of recommending diverse and relevant results to users, have received significant attention. However, current studies often face a trade-off: they either recommend highly accurate but homogeneous items or boost diversity at the cost of relevance, making it challenging for users to find truly satisfying recommendations that meet both their obvious and potential needs. To overcome this competitive trade-off, we introduce a unified framework that simultaneously leverages a discriminative model and a generative model. This approach allows us to adjust the focus of learning dynamically. Specifically, our framework uses Variational Graph Auto-Encoders to enhance the diversity of recommendations, while Graph Convolution Networks are employed to ensure high accuracy in predicting user preferences. This dual focus enables our system to deliver recommendations that are both diverse and closely aligned with user interests. Inspired by the quality vs. diversity decomposition of Determinantal Point Process (DPP) kernel, we design the DPP likelihood-based loss function as the joint modeling loss. Extensive experiments on three real-world datasets, demonstrating that the unified framework goes beyond quality-diversity trade-off, i.e., instead of sacrificing accuracy for promoting diversity, the joint modeling actually boosts both metrics.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.