超顺磁性 Fe3O4@SiO2@3,4-DABP 纳米催化剂的设计、共沉淀和溶胶-凝胶法的制备、表面纹理详细特性的表征以及太阳能电池性能的研究

IF 5.7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Surfaces and Interfaces Pub Date : 2024-11-07 DOI:10.1016/j.surfin.2024.105411
Ali Koçhan , Mehmet Şakir Ece , Sabit Horoz , Sinan Kutluay , Ömer Şahin
{"title":"超顺磁性 Fe3O4@SiO2@3,4-DABP 纳米催化剂的设计、共沉淀和溶胶-凝胶法的制备、表面纹理详细特性的表征以及太阳能电池性能的研究","authors":"Ali Koçhan ,&nbsp;Mehmet Şakir Ece ,&nbsp;Sabit Horoz ,&nbsp;Sinan Kutluay ,&nbsp;Ömer Şahin","doi":"10.1016/j.surfin.2024.105411","DOIUrl":null,"url":null,"abstract":"<div><div>This research focuses on the synthesis, characterization, and evaluation of Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>, and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP magnetic nanocatalysts (MNCs) for their potential use as sensors within the intricate architectures of solar cell devices. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) surface area measurements were carried out to characterize the structural, morphological and magnetic properties of the MNCs. The MNCs exhibit an average particle size of approximately 10 nm. Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>, and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP MNCs have saturation magnetization values ​​of 61.64 emu/g, 37.31 emu/g, and 20.13 emu/g, respectively. Thermal analysis reveals mass change losses of 6.5%, 12% and 28.1%, respectively, indicating different thermal stability profiles. It confirms that their crystal structure is face-centered cubic spinel, with type IV hysteresis loops and H3 loops indicating a mesoporous structure according to the IUPAC classification. Efficiency tests of Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP MNCs in solar cell devices show efficiencies of 1.49%, 1.77% and 2.15%, respectively. As the hierarchical modification of the MNCs increases, the efficiency of the solar cell devices increases. These results highlight the potential of Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP as promising sensitizers in solar cell technology. Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP MNCs have high catalytic activity, chemical stability, electronic conductivity and low cost. This study also marks the first demonstration of the effectiveness of environmentally friendly Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP MNCs in enhancing solar cell performance, prepared via a cost-effective, simple and eco-friendly approach.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105411"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of superparamagnetic Fe3O4@SiO2@3,4-DABP nanocatalysts, fabrication by co-precipitation and sol-gel methods, characterization of detailed surface texture properties and investigation of solar cell performance\",\"authors\":\"Ali Koçhan ,&nbsp;Mehmet Şakir Ece ,&nbsp;Sabit Horoz ,&nbsp;Sinan Kutluay ,&nbsp;Ömer Şahin\",\"doi\":\"10.1016/j.surfin.2024.105411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research focuses on the synthesis, characterization, and evaluation of Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>, and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP magnetic nanocatalysts (MNCs) for their potential use as sensors within the intricate architectures of solar cell devices. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) surface area measurements were carried out to characterize the structural, morphological and magnetic properties of the MNCs. The MNCs exhibit an average particle size of approximately 10 nm. Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>, and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP MNCs have saturation magnetization values ​​of 61.64 emu/g, 37.31 emu/g, and 20.13 emu/g, respectively. Thermal analysis reveals mass change losses of 6.5%, 12% and 28.1%, respectively, indicating different thermal stability profiles. It confirms that their crystal structure is face-centered cubic spinel, with type IV hysteresis loops and H3 loops indicating a mesoporous structure according to the IUPAC classification. Efficiency tests of Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP MNCs in solar cell devices show efficiencies of 1.49%, 1.77% and 2.15%, respectively. As the hierarchical modification of the MNCs increases, the efficiency of the solar cell devices increases. These results highlight the potential of Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP as promising sensitizers in solar cell technology. Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP MNCs have high catalytic activity, chemical stability, electronic conductivity and low cost. This study also marks the first demonstration of the effectiveness of environmentally friendly Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@3,4-DABP MNCs in enhancing solar cell performance, prepared via a cost-effective, simple and eco-friendly approach.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"55 \",\"pages\":\"Article 105411\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024015670\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015670","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是 Fe3O4、Fe3O4@SiO2 和 Fe3O4@SiO2@3,4-DABP 磁性纳米催化剂 (MNC) 的合成、表征和评估,研究其在太阳能电池设备的复杂结构中作为传感器的潜在用途。为了表征 MNCs 的结构、形态和磁性能,研究人员采用了傅立叶变换红外光谱(FTIR)、扫描电子显微镜与能量色散 X 射线光谱(SEM-EDS)、透射电子显微镜(TEM)、振动样品磁力计(VSM)、X 射线衍射(XRD)、热重分析(TGA)和布鲁诺-艾美特-泰勒(BET)表面积测量法。MNCs 的平均粒径约为 10 纳米。Fe3O4、Fe3O4@SiO2 和 Fe3O4@SiO2@3,4-DABP MNC 的饱和磁化值分别为 61.64 emu/g、37.31 emu/g 和 20.13 emu/g。热分析显示其质量变化损失分别为 6.5%、12% 和 28.1%,表明它们具有不同的热稳定性。根据国际理论化学和应用化学联合会(IUPAC)的分类,确认其晶体结构为面心立方尖晶石,具有 IV 型滞后环和 H3 环,表明其为介孔结构。Fe3O4、Fe3O4@SiO2 和 Fe3O4@SiO2@3,4-DABP MNCs 在太阳能电池装置中的效率测试表明,其效率分别为 1.49%、1.77% 和 2.15%。随着 MNCs 层次修饰的增加,太阳能电池器件的效率也随之提高。这些结果凸显了 Fe3O4、Fe3O4@SiO2 和 Fe3O4@SiO2@3,4-DABP 作为太阳能电池技术感光剂的潜力。Fe3O4@SiO2@3,4-DABP MNCs 具有高催化活性、化学稳定性、电子导电性和低成本。这项研究还首次证明了环保型 Fe3O4@SiO2@3,4-DABP MNCs 在提高太阳能电池性能方面的有效性,其制备方法经济、简单且环保。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of superparamagnetic Fe3O4@SiO2@3,4-DABP nanocatalysts, fabrication by co-precipitation and sol-gel methods, characterization of detailed surface texture properties and investigation of solar cell performance
This research focuses on the synthesis, characterization, and evaluation of Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@3,4-DABP magnetic nanocatalysts (MNCs) for their potential use as sensors within the intricate architectures of solar cell devices. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) surface area measurements were carried out to characterize the structural, morphological and magnetic properties of the MNCs. The MNCs exhibit an average particle size of approximately 10 nm. Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@3,4-DABP MNCs have saturation magnetization values ​​of 61.64 emu/g, 37.31 emu/g, and 20.13 emu/g, respectively. Thermal analysis reveals mass change losses of 6.5%, 12% and 28.1%, respectively, indicating different thermal stability profiles. It confirms that their crystal structure is face-centered cubic spinel, with type IV hysteresis loops and H3 loops indicating a mesoporous structure according to the IUPAC classification. Efficiency tests of Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@3,4-DABP MNCs in solar cell devices show efficiencies of 1.49%, 1.77% and 2.15%, respectively. As the hierarchical modification of the MNCs increases, the efficiency of the solar cell devices increases. These results highlight the potential of Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@3,4-DABP as promising sensitizers in solar cell technology. Fe3O4@SiO2@3,4-DABP MNCs have high catalytic activity, chemical stability, electronic conductivity and low cost. This study also marks the first demonstration of the effectiveness of environmentally friendly Fe3O4@SiO2@3,4-DABP MNCs in enhancing solar cell performance, prepared via a cost-effective, simple and eco-friendly approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
期刊最新文献
Editorial Board Multiple crosslinked alkyl ketene dimer-based superhydrophobic coating for structurally robust waterproof cellulosic paper Zinc-manganese bimetallic sulfides anchored on the surface of corn stalk carbon used as the anode of lithium ion batteries One-pot construction of highly active defective g-C3N4 via hydrogen bond of the biomass for the improvement of CO2 conversion Thermal boundary conductance enhancement of the Si/diamond interface via atomic transition strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1