重新审视稀土磁体的磁性质地评估:矫顽力的作用

IF 2.5 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Magnetism and Magnetic Materials Pub Date : 2024-11-03 DOI:10.1016/j.jmmm.2024.172639
Luis T. Quispe , Leonardo F. Antunes , A.A. Baldárrago-Alcántara , Wagner C. Macedo , Marcelo A. Rosa , Querem H.F. Rebelo , Leonardo U. Lopes , Sérgio M. Souza , Paulo A.P. Wendhausen
{"title":"重新审视稀土磁体的磁性质地评估:矫顽力的作用","authors":"Luis T. Quispe ,&nbsp;Leonardo F. Antunes ,&nbsp;A.A. Baldárrago-Alcántara ,&nbsp;Wagner C. Macedo ,&nbsp;Marcelo A. Rosa ,&nbsp;Querem H.F. Rebelo ,&nbsp;Leonardo U. Lopes ,&nbsp;Sérgio M. Souza ,&nbsp;Paulo A.P. Wendhausen","doi":"10.1016/j.jmmm.2024.172639","DOIUrl":null,"url":null,"abstract":"<div><div>A crucial figure of merit of rare-earth magnets is their magnetic texture, because it is closely related to the maximum remanence a magnet can achieve, hence assessing the magnetic texture is pivotal in terms of magnet’s performance. Fernengel <em>et al</em>. (1996) developed a methodology based on magnetometry, which allows for a quick determination of the texture by calculating the degree of alignment 〈cosθ〉 from the remanent magnetization in directions parallel and perpendicular to the texture axis of the magnet. Although this method provided reliable values, its application was limited to magnets with high degrees of alignment (〈cosθ〉 &gt; 95 %), a restriction that was corrected by Quispe <em>et al</em>. (2020). Nevertheless, recent experiments have indicated that the magnetometry technique can introduce errors in texture assessment when the magnet presents high levels of coercivity. This work presents an approach that incorporates a correction factor into the magnetometry technique, accounting for the effect of the coercivity and circumventing this error source in texture assessment. The proposed methodology has been successfully applied to magnets with varying levels of coercivity.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"612 ","pages":"Article 172639"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the assessment of magnetic texture of Rare-Earth Magnets: The role of coercivity\",\"authors\":\"Luis T. Quispe ,&nbsp;Leonardo F. Antunes ,&nbsp;A.A. Baldárrago-Alcántara ,&nbsp;Wagner C. Macedo ,&nbsp;Marcelo A. Rosa ,&nbsp;Querem H.F. Rebelo ,&nbsp;Leonardo U. Lopes ,&nbsp;Sérgio M. Souza ,&nbsp;Paulo A.P. Wendhausen\",\"doi\":\"10.1016/j.jmmm.2024.172639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A crucial figure of merit of rare-earth magnets is their magnetic texture, because it is closely related to the maximum remanence a magnet can achieve, hence assessing the magnetic texture is pivotal in terms of magnet’s performance. Fernengel <em>et al</em>. (1996) developed a methodology based on magnetometry, which allows for a quick determination of the texture by calculating the degree of alignment 〈cosθ〉 from the remanent magnetization in directions parallel and perpendicular to the texture axis of the magnet. Although this method provided reliable values, its application was limited to magnets with high degrees of alignment (〈cosθ〉 &gt; 95 %), a restriction that was corrected by Quispe <em>et al</em>. (2020). Nevertheless, recent experiments have indicated that the magnetometry technique can introduce errors in texture assessment when the magnet presents high levels of coercivity. This work presents an approach that incorporates a correction factor into the magnetometry technique, accounting for the effect of the coercivity and circumventing this error source in texture assessment. The proposed methodology has been successfully applied to magnets with varying levels of coercivity.</div></div>\",\"PeriodicalId\":366,\"journal\":{\"name\":\"Journal of Magnetism and Magnetic Materials\",\"volume\":\"612 \",\"pages\":\"Article 172639\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetism and Magnetic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304885324009302\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885324009302","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

稀土磁体的一个重要优点是其磁性质地,因为它与磁体所能达到的最大剩磁密切相关,因此评估磁性质地对磁体的性能至关重要。Fernengel 等人(1996 年)开发了一种基于磁力测量的方法,通过计算与磁体纹理轴平行和垂直方向的剩磁排列度〈cosθ〉,可以快速确定纹理。虽然这种方法提供了可靠的数值,但其应用仅限于对准度较高(〈cosθ〉 > 95 %)的磁体,Quispe 等人(2020 年)纠正了这一限制。然而,最近的实验表明,当磁体呈现高矫顽力时,磁力测量技术可能会在纹理评估中引入误差。这项研究提出了一种方法,在磁力测量技术中加入一个校正因子,以考虑矫顽力的影响,规避纹理评估中的这一误差源。所提出的方法已成功应用于不同矫顽力水平的磁体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revisiting the assessment of magnetic texture of Rare-Earth Magnets: The role of coercivity
A crucial figure of merit of rare-earth magnets is their magnetic texture, because it is closely related to the maximum remanence a magnet can achieve, hence assessing the magnetic texture is pivotal in terms of magnet’s performance. Fernengel et al. (1996) developed a methodology based on magnetometry, which allows for a quick determination of the texture by calculating the degree of alignment 〈cosθ〉 from the remanent magnetization in directions parallel and perpendicular to the texture axis of the magnet. Although this method provided reliable values, its application was limited to magnets with high degrees of alignment (〈cosθ〉 > 95 %), a restriction that was corrected by Quispe et al. (2020). Nevertheless, recent experiments have indicated that the magnetometry technique can introduce errors in texture assessment when the magnet presents high levels of coercivity. This work presents an approach that incorporates a correction factor into the magnetometry technique, accounting for the effect of the coercivity and circumventing this error source in texture assessment. The proposed methodology has been successfully applied to magnets with varying levels of coercivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnetism and Magnetic Materials
Journal of Magnetism and Magnetic Materials 物理-材料科学:综合
CiteScore
5.30
自引率
11.10%
发文量
1149
审稿时长
59 days
期刊介绍: The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public. Main Categories: Full-length articles: Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged. In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications. The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications. The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism. Review articles: Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.
期刊最新文献
Effect of precursor state on the formation of triphase (SmCo7 + SmCo3)/Fe(Co) magnets Editorial Board A magnetically controlled bio-inspired cobweb soft robot based on structural topology optimization Textured CoZn-18H hexaferrite with enhanced Snoek’s product and suppressed magnetic loss Influence of atomic substitution on the structural stability and half-metallicity of Fe2-xCrxCoSi (x = 0 to 1) alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1