对 HMGB1 在人类肿瘤中致癌功能的泛癌分析

IF 2.3 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry and Biophysics Reports Pub Date : 2024-11-07 DOI:10.1016/j.bbrep.2024.101851
Hui-min Yang , Xiang-ning Zhao , Xiao-ling Li , Xi Wang , Yu Pu , Dong-kai Wei , Zhe Li
{"title":"对 HMGB1 在人类肿瘤中致癌功能的泛癌分析","authors":"Hui-min Yang ,&nbsp;Xiang-ning Zhao ,&nbsp;Xiao-ling Li ,&nbsp;Xi Wang ,&nbsp;Yu Pu ,&nbsp;Dong-kai Wei ,&nbsp;Zhe Li","doi":"10.1016/j.bbrep.2024.101851","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Although high mobility group box protein 1 (<em>HMGB1</em>) has been researched in relation to cancer in many investigations, a thorough investigation of its role in pan-cancer has yet to be conducted. With the objective of bridging this gap, we delved into the functions of <em>HMGB1</em> in various tumors.</div></div><div><h3>Methods</h3><div>This investigation employed The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to examine <em>HMGB1</em> gene expression differences and correlation with survival across various human tumors. Then, genetic alterations of <em>HMGB1</em> were analyzed by tool cBioPortal, and immune cell infiltration was assessed. Finally, we gathered clinial samples from 95 patients with various types of solid tumor and performed somatic mutation analysis using panel sequencing. This further highlighted the role of HMGB1 in different solid tumors.</div></div><div><h3>Results</h3><div>There was a notable elevation of <em>HMGB1</em> gene expression in tumor tissues as opposed to non-cancerous tissues across the bulk of tumor types. Elevated <em>HMGB1</em> gene expression had a connection with shorter overall survival, progression-free survival, and disease-free survival in specific tumor types. Genetic alterations of <em>HMGB1</em> suggested that the amplifications and mutations of <em>HMGB1</em> may impact the prognosis of breast cancer (BRCA) and liver hepatocellular carcinoma (LIHC). Both BRCA and mesothelioma (MESO) displayed a connection between the infiltration of cancer-associated fibroblasts (CAFs) and <em>HMGB1</em> gene expression. Moreover, <em>HMGB1</em> co-expression analysis revealed its association with genes involved in RNA splicing, mRNA processing, and modulation of mRNA metabolic processes. Additionally, a pathway analysis by use of the Kyoto Encyclopedia of Genes and Genomes (KEGG) unveiled that <em>HMGB1</em> was implicated in the pathogenic mechanisms of \"Hepatitis B,\" \"Viral Carcinogenesis,\" and \"Hepatocellular Carcinoma.\" Based on somatic mutation analysis of 95 patients with different solid tumors, we found that the frequency of HMGB1 mutations was higher in Liver cancer patients compared to other solid tumors. This finding is consistent with our in-silico study results. Additionally, we discovered that the frequency of HMGB1 mutations ranked among the top 20 mutated genes in the 95 patients’ data, indicating that HMGB1 plays an important role in the development and prognosis of various solid tumors.</div></div><div><h3>Conclusion</h3><div>This pan-cancer study of <em>HMGB1</em> underscores its potential as a signature marker and target for the management of various tumor types.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"40 ","pages":"Article 101851"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pan-cancer analysis of the oncogenic function of HMGB1 in human tumors\",\"authors\":\"Hui-min Yang ,&nbsp;Xiang-ning Zhao ,&nbsp;Xiao-ling Li ,&nbsp;Xi Wang ,&nbsp;Yu Pu ,&nbsp;Dong-kai Wei ,&nbsp;Zhe Li\",\"doi\":\"10.1016/j.bbrep.2024.101851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Although high mobility group box protein 1 (<em>HMGB1</em>) has been researched in relation to cancer in many investigations, a thorough investigation of its role in pan-cancer has yet to be conducted. With the objective of bridging this gap, we delved into the functions of <em>HMGB1</em> in various tumors.</div></div><div><h3>Methods</h3><div>This investigation employed The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to examine <em>HMGB1</em> gene expression differences and correlation with survival across various human tumors. Then, genetic alterations of <em>HMGB1</em> were analyzed by tool cBioPortal, and immune cell infiltration was assessed. Finally, we gathered clinial samples from 95 patients with various types of solid tumor and performed somatic mutation analysis using panel sequencing. This further highlighted the role of HMGB1 in different solid tumors.</div></div><div><h3>Results</h3><div>There was a notable elevation of <em>HMGB1</em> gene expression in tumor tissues as opposed to non-cancerous tissues across the bulk of tumor types. Elevated <em>HMGB1</em> gene expression had a connection with shorter overall survival, progression-free survival, and disease-free survival in specific tumor types. Genetic alterations of <em>HMGB1</em> suggested that the amplifications and mutations of <em>HMGB1</em> may impact the prognosis of breast cancer (BRCA) and liver hepatocellular carcinoma (LIHC). Both BRCA and mesothelioma (MESO) displayed a connection between the infiltration of cancer-associated fibroblasts (CAFs) and <em>HMGB1</em> gene expression. Moreover, <em>HMGB1</em> co-expression analysis revealed its association with genes involved in RNA splicing, mRNA processing, and modulation of mRNA metabolic processes. Additionally, a pathway analysis by use of the Kyoto Encyclopedia of Genes and Genomes (KEGG) unveiled that <em>HMGB1</em> was implicated in the pathogenic mechanisms of \\\"Hepatitis B,\\\" \\\"Viral Carcinogenesis,\\\" and \\\"Hepatocellular Carcinoma.\\\" Based on somatic mutation analysis of 95 patients with different solid tumors, we found that the frequency of HMGB1 mutations was higher in Liver cancer patients compared to other solid tumors. This finding is consistent with our in-silico study results. Additionally, we discovered that the frequency of HMGB1 mutations ranked among the top 20 mutated genes in the 95 patients’ data, indicating that HMGB1 plays an important role in the development and prognosis of various solid tumors.</div></div><div><h3>Conclusion</h3><div>This pan-cancer study of <em>HMGB1</em> underscores its potential as a signature marker and target for the management of various tumor types.</div></div>\",\"PeriodicalId\":8771,\"journal\":{\"name\":\"Biochemistry and Biophysics Reports\",\"volume\":\"40 \",\"pages\":\"Article 101851\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Biophysics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405580824002152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580824002152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景虽然许多研究都对高迁移率基团盒蛋白1(HMGB1)与癌症的关系进行了研究,但对其在泛癌症中的作用的深入研究尚未开展。本研究利用癌症基因组图谱(The Cancer Genome Atlas,TCGA)和基因表达总库(Gene Expression Omnibus,GEO)数据库研究了各种人类肿瘤中 HMGB1 基因表达的差异及其与生存的相关性。然后,利用 cBioPortal 工具分析了 HMGB1 的基因改变,并评估了免疫细胞浸润。最后,我们收集了 95 例各种类型实体瘤患者的临床样本,并利用面板测序技术进行了体细胞突变分析。结果在大部分肿瘤类型中,肿瘤组织中的 HMGB1 基因表达明显高于非肿瘤组织。在特定肿瘤类型中,HMGB1 基因表达的升高与总生存期、无进展生存期和无病生存期的缩短有关。HMGB1 的基因改变表明,HMGB1 的扩增和突变可能会影响乳腺癌(BRCA)和肝肝细胞癌(LIHC)的预后。BRCA 和间皮瘤(MESO)的癌相关成纤维细胞(CAFs)浸润与 HMGB1 基因表达之间存在联系。此外,HMGB1 的共表达分析表明,它与涉及 RNA 剪接、mRNA 处理和 mRNA 代谢过程调节的基因有关。此外,利用京都基因和基因组百科全书(KEGG)进行的通路分析发现,HMGB1 与 "乙型肝炎"、"病毒性癌变 "和 "肝细胞癌 "的致病机制有关。根据对 95 名不同实体瘤患者的体细胞突变分析,我们发现肝癌患者的 HMGB1 突变频率高于其他实体瘤患者。这一发现与我们的室内研究结果一致。此外,我们还发现 HMGB1 基因突变的频率在 95 例患者数据的前 20 个突变基因中名列前茅,这表明 HMGB1 在各种实体瘤的发展和预后中发挥着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A pan-cancer analysis of the oncogenic function of HMGB1 in human tumors

Background

Although high mobility group box protein 1 (HMGB1) has been researched in relation to cancer in many investigations, a thorough investigation of its role in pan-cancer has yet to be conducted. With the objective of bridging this gap, we delved into the functions of HMGB1 in various tumors.

Methods

This investigation employed The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to examine HMGB1 gene expression differences and correlation with survival across various human tumors. Then, genetic alterations of HMGB1 were analyzed by tool cBioPortal, and immune cell infiltration was assessed. Finally, we gathered clinial samples from 95 patients with various types of solid tumor and performed somatic mutation analysis using panel sequencing. This further highlighted the role of HMGB1 in different solid tumors.

Results

There was a notable elevation of HMGB1 gene expression in tumor tissues as opposed to non-cancerous tissues across the bulk of tumor types. Elevated HMGB1 gene expression had a connection with shorter overall survival, progression-free survival, and disease-free survival in specific tumor types. Genetic alterations of HMGB1 suggested that the amplifications and mutations of HMGB1 may impact the prognosis of breast cancer (BRCA) and liver hepatocellular carcinoma (LIHC). Both BRCA and mesothelioma (MESO) displayed a connection between the infiltration of cancer-associated fibroblasts (CAFs) and HMGB1 gene expression. Moreover, HMGB1 co-expression analysis revealed its association with genes involved in RNA splicing, mRNA processing, and modulation of mRNA metabolic processes. Additionally, a pathway analysis by use of the Kyoto Encyclopedia of Genes and Genomes (KEGG) unveiled that HMGB1 was implicated in the pathogenic mechanisms of "Hepatitis B," "Viral Carcinogenesis," and "Hepatocellular Carcinoma." Based on somatic mutation analysis of 95 patients with different solid tumors, we found that the frequency of HMGB1 mutations was higher in Liver cancer patients compared to other solid tumors. This finding is consistent with our in-silico study results. Additionally, we discovered that the frequency of HMGB1 mutations ranked among the top 20 mutated genes in the 95 patients’ data, indicating that HMGB1 plays an important role in the development and prognosis of various solid tumors.

Conclusion

This pan-cancer study of HMGB1 underscores its potential as a signature marker and target for the management of various tumor types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry and Biophysics Reports
Biochemistry and Biophysics Reports Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
191
审稿时长
59 days
期刊介绍: Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.
期刊最新文献
Application of liposomal nanoparticles of berberine in photodynamic therapy of A549 lung cancer spheroids NOS3 regulates angiogenic potential of human induced pluripotent stem cell-derived endothelial cells StarD5 modulates B cell cholesterol synthesis and IgG1 plasma cell differentiation Molecular dynamics studies reveal the structural impacts of LRRK2 R1441C and LRRK2 D1994A mutations in Parkinson's disease An immortalized adipose-derived stem cells line from the PIK3CA-related overgrowth spectrum: Unveiling novel therapeutic targets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1