槐角苷通过下调 NLRP3 信号,减轻 II 型胶原蛋白诱导的关节炎的炎症反应

IF 2.3 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry and Biophysics Reports Pub Date : 2024-11-12 DOI:10.1016/j.bbrep.2024.101867
Youyang Liu , Yunlu Zhao , Qi Guo , Pengfei Wang , Peixuan Li , Qingqing Du , Huazhou Xu , Qingyin Yu , Xiaoyi Zhao , Weiya Zhang , Shengjun An , Shuhui Wu
{"title":"槐角苷通过下调 NLRP3 信号,减轻 II 型胶原蛋白诱导的关节炎的炎症反应","authors":"Youyang Liu ,&nbsp;Yunlu Zhao ,&nbsp;Qi Guo ,&nbsp;Pengfei Wang ,&nbsp;Peixuan Li ,&nbsp;Qingqing Du ,&nbsp;Huazhou Xu ,&nbsp;Qingyin Yu ,&nbsp;Xiaoyi Zhao ,&nbsp;Weiya Zhang ,&nbsp;Shengjun An ,&nbsp;Shuhui Wu","doi":"10.1016/j.bbrep.2024.101867","DOIUrl":null,"url":null,"abstract":"<div><div>Immune responses, especially NLRP3 signaling in macrophages, play critical roles in rheumatoid arthritis (RA), an autoimmune and inflammatory disease. In this study, we aimed to identify novel therapies for RA. We focused on sophoricoside (SOP), an isoflavone glycoside isolated from <em>Sophora japonica</em>. We predicted the targets of SOP and performed a Gene Ontology analysis to assess its effects. The results suggested that SOP is related to inflammation regulation. We verified these findings by performing <em>in vitro</em> experiments with M1 macrophages differentiated from human peripheral blood monocytes (THP-1 cells). Sophoricoside administration reduced inflammatory activity and NLRP3, Caspase-1, and IL-1β protein levels in macrophages. In addition, SOP and triptolide (TP) was administered intragastrically to male SD rats (n = 40) in a collagen-induced arthritis model. We observed that SOP and TP reduced the inflammatory responses and symptoms of RA. Moreover, unlike TP, SOP showed no liver or kidney toxicity in rats. In conclusion, SOP reduces inflammation in type II collagen-induced arthritis by downregulating NLRP3 signaling and has potential for future clinical applications as an ideal therapy for RA.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"40 ","pages":"Article 101867"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sophoricoside reduces inflammation in type II collagen-induced arthritis by downregulating NLRP3 signaling\",\"authors\":\"Youyang Liu ,&nbsp;Yunlu Zhao ,&nbsp;Qi Guo ,&nbsp;Pengfei Wang ,&nbsp;Peixuan Li ,&nbsp;Qingqing Du ,&nbsp;Huazhou Xu ,&nbsp;Qingyin Yu ,&nbsp;Xiaoyi Zhao ,&nbsp;Weiya Zhang ,&nbsp;Shengjun An ,&nbsp;Shuhui Wu\",\"doi\":\"10.1016/j.bbrep.2024.101867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Immune responses, especially NLRP3 signaling in macrophages, play critical roles in rheumatoid arthritis (RA), an autoimmune and inflammatory disease. In this study, we aimed to identify novel therapies for RA. We focused on sophoricoside (SOP), an isoflavone glycoside isolated from <em>Sophora japonica</em>. We predicted the targets of SOP and performed a Gene Ontology analysis to assess its effects. The results suggested that SOP is related to inflammation regulation. We verified these findings by performing <em>in vitro</em> experiments with M1 macrophages differentiated from human peripheral blood monocytes (THP-1 cells). Sophoricoside administration reduced inflammatory activity and NLRP3, Caspase-1, and IL-1β protein levels in macrophages. In addition, SOP and triptolide (TP) was administered intragastrically to male SD rats (n = 40) in a collagen-induced arthritis model. We observed that SOP and TP reduced the inflammatory responses and symptoms of RA. Moreover, unlike TP, SOP showed no liver or kidney toxicity in rats. In conclusion, SOP reduces inflammation in type II collagen-induced arthritis by downregulating NLRP3 signaling and has potential for future clinical applications as an ideal therapy for RA.</div></div>\",\"PeriodicalId\":8771,\"journal\":{\"name\":\"Biochemistry and Biophysics Reports\",\"volume\":\"40 \",\"pages\":\"Article 101867\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Biophysics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405580824002310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580824002310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

免疫反应,尤其是巨噬细胞中的 NLRP3 信号在类风湿性关节炎(RA)这一自身免疫性炎症疾病中起着至关重要的作用。在这项研究中,我们旨在找出治疗类风湿性关节炎的新型疗法。我们重点研究了槐角苷(SOP),这是一种从槐树中分离出来的异黄酮苷。我们预测了 SOP 的靶点,并进行了基因本体分析以评估其作用。结果表明,SOP 与炎症调节有关。我们用人外周血单核细胞(THP-1 细胞)分化出的 M1 巨噬细胞进行了体外实验,验证了这些发现。服用槐角苷可降低巨噬细胞的炎症活性和 NLRP3、Caspase-1 和 IL-1β 蛋白水平。此外,在胶原蛋白诱导的关节炎模型中,给雄性 SD 大鼠(n = 40)灌胃 SOP 和曲普内酯(TP)。我们观察到,SOP 和 TP 可减轻炎症反应和 RA 症状。此外,与 TP 不同的是,SOP 对大鼠的肝脏和肾脏没有毒性。总之,SOP 可通过下调 NLRP3 信号来减轻 II 型胶原蛋白诱导的关节炎的炎症反应,未来有望作为治疗 RA 的理想疗法应用于临床。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sophoricoside reduces inflammation in type II collagen-induced arthritis by downregulating NLRP3 signaling
Immune responses, especially NLRP3 signaling in macrophages, play critical roles in rheumatoid arthritis (RA), an autoimmune and inflammatory disease. In this study, we aimed to identify novel therapies for RA. We focused on sophoricoside (SOP), an isoflavone glycoside isolated from Sophora japonica. We predicted the targets of SOP and performed a Gene Ontology analysis to assess its effects. The results suggested that SOP is related to inflammation regulation. We verified these findings by performing in vitro experiments with M1 macrophages differentiated from human peripheral blood monocytes (THP-1 cells). Sophoricoside administration reduced inflammatory activity and NLRP3, Caspase-1, and IL-1β protein levels in macrophages. In addition, SOP and triptolide (TP) was administered intragastrically to male SD rats (n = 40) in a collagen-induced arthritis model. We observed that SOP and TP reduced the inflammatory responses and symptoms of RA. Moreover, unlike TP, SOP showed no liver or kidney toxicity in rats. In conclusion, SOP reduces inflammation in type II collagen-induced arthritis by downregulating NLRP3 signaling and has potential for future clinical applications as an ideal therapy for RA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry and Biophysics Reports
Biochemistry and Biophysics Reports Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
191
审稿时长
59 days
期刊介绍: Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.
期刊最新文献
Application of liposomal nanoparticles of berberine in photodynamic therapy of A549 lung cancer spheroids NOS3 regulates angiogenic potential of human induced pluripotent stem cell-derived endothelial cells StarD5 modulates B cell cholesterol synthesis and IgG1 plasma cell differentiation Molecular dynamics studies reveal the structural impacts of LRRK2 R1441C and LRRK2 D1994A mutations in Parkinson's disease An immortalized adipose-derived stem cells line from the PIK3CA-related overgrowth spectrum: Unveiling novel therapeutic targets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1