Xinle Wang , Zhitao Tian , Adil Malik , Yingqi Fan , Hai Zhang , Huawei Lu
{"title":"尖端喷射对高温气冷堆中高负荷氦压缩机性能的影响","authors":"Xinle Wang , Zhitao Tian , Adil Malik , Yingqi Fan , Hai Zhang , Huawei Lu","doi":"10.1016/j.nucengdes.2024.113683","DOIUrl":null,"url":null,"abstract":"<div><div>As one of the representatives of the fourth-generation advanced nuclear reactor, the continuous development and application of high-temperature gas-cooled reactor (HTGR) technology has promoted the technical progress of the whole nuclear energy field. Helium compressor is one of the core components of HTGR. The highly loaded helium compressor effectively solves the disadvantages of the low single-stage pressure ratio and numerous stages of the traditional helium compressor. But it also brings a more complex tip-leakage flow. Tip injection, which is an active control method, can effectively control the tip clearance leakage and inhibit the development of the leakage vortex. This paper analyses the effects of axial deflection angle and injection pitch angle on the rotor performance of a highly loaded helium compressor via numerical simulation and validates them via experiment. Results show that the leakage vortex can be blown to the pressure surface of the adjacent blade by proper axial deflection angle to reduce the vorticity of the leakage vortex. The injection pitch angle directly affects the intensity of the leakage vortex during its initiation and development. When the axial deflection angle is 60° and the injection pitch angle is 20°, the adiabatic compression efficiency and total pressure ratio increase by 0.554 % and 0.160 % respectively under the design condition, and by 0.822 % and 0.162 % respectively under near-stall conditions.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"430 ","pages":"Article 113683"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of tip injection on performance of highly loaded helium compressor in high-temperature gas-cooled reactor\",\"authors\":\"Xinle Wang , Zhitao Tian , Adil Malik , Yingqi Fan , Hai Zhang , Huawei Lu\",\"doi\":\"10.1016/j.nucengdes.2024.113683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As one of the representatives of the fourth-generation advanced nuclear reactor, the continuous development and application of high-temperature gas-cooled reactor (HTGR) technology has promoted the technical progress of the whole nuclear energy field. Helium compressor is one of the core components of HTGR. The highly loaded helium compressor effectively solves the disadvantages of the low single-stage pressure ratio and numerous stages of the traditional helium compressor. But it also brings a more complex tip-leakage flow. Tip injection, which is an active control method, can effectively control the tip clearance leakage and inhibit the development of the leakage vortex. This paper analyses the effects of axial deflection angle and injection pitch angle on the rotor performance of a highly loaded helium compressor via numerical simulation and validates them via experiment. Results show that the leakage vortex can be blown to the pressure surface of the adjacent blade by proper axial deflection angle to reduce the vorticity of the leakage vortex. The injection pitch angle directly affects the intensity of the leakage vortex during its initiation and development. When the axial deflection angle is 60° and the injection pitch angle is 20°, the adiabatic compression efficiency and total pressure ratio increase by 0.554 % and 0.160 % respectively under the design condition, and by 0.822 % and 0.162 % respectively under near-stall conditions.</div></div>\",\"PeriodicalId\":19170,\"journal\":{\"name\":\"Nuclear Engineering and Design\",\"volume\":\"430 \",\"pages\":\"Article 113683\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549324007830\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007830","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Effect of tip injection on performance of highly loaded helium compressor in high-temperature gas-cooled reactor
As one of the representatives of the fourth-generation advanced nuclear reactor, the continuous development and application of high-temperature gas-cooled reactor (HTGR) technology has promoted the technical progress of the whole nuclear energy field. Helium compressor is one of the core components of HTGR. The highly loaded helium compressor effectively solves the disadvantages of the low single-stage pressure ratio and numerous stages of the traditional helium compressor. But it also brings a more complex tip-leakage flow. Tip injection, which is an active control method, can effectively control the tip clearance leakage and inhibit the development of the leakage vortex. This paper analyses the effects of axial deflection angle and injection pitch angle on the rotor performance of a highly loaded helium compressor via numerical simulation and validates them via experiment. Results show that the leakage vortex can be blown to the pressure surface of the adjacent blade by proper axial deflection angle to reduce the vorticity of the leakage vortex. The injection pitch angle directly affects the intensity of the leakage vortex during its initiation and development. When the axial deflection angle is 60° and the injection pitch angle is 20°, the adiabatic compression efficiency and total pressure ratio increase by 0.554 % and 0.160 % respectively under the design condition, and by 0.822 % and 0.162 % respectively under near-stall conditions.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.