Xinyu Ye , Xionghui Gui , Wanqing Wang , Chengjie Ge , Shuo Yin , Rocco Lupoi , Wenya Li , Xinkun Suo
{"title":"利用激光喷涂技术构建疏水/亲水表面:一条新途径","authors":"Xinyu Ye , Xionghui Gui , Wanqing Wang , Chengjie Ge , Shuo Yin , Rocco Lupoi , Wenya Li , Xinkun Suo","doi":"10.1016/j.surfin.2024.105422","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrophobic/hydrophilic coatings are widely applied in healthcare, construction, and electronic devices. However, low-cost preparation of coatings is a challenge because they are often associated with complex procedures and adverse environmental impacts. Therefore, an innovative low-cost and environmentally friendly laser spraying technology was employed to fabricate hydrophobic and hydrophilic Ni coatings. The wettability of the coatings was regulated by systematically varying laser power and substrate temperature. The Ni particles presented spherical morphology, low oxidation rate and low coverage rate (4 %) with a laser power of 3000 W and room temperature substrate, yielding a hydrophobic coating with a water contact angle of 125.9 ± 17.2° Conversely, Ni particles exhibited oblate spherical morphology, higher oxidation rate, higher coverage rate (95 %) and a porous structure with a laser power of 5400 W and a substrate temperature of 700 °C, resulting in a hydrophilic coating with a water contact angle of 8.4 ± 1.2° These findings demonstrate a novel approach for tailoring the wettability of the Ni coatings, offering new insights into the fabrication of functional coatings for various applications.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105422"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrophobic/hydrophilic surfaces constructed using laser spraying: A new route\",\"authors\":\"Xinyu Ye , Xionghui Gui , Wanqing Wang , Chengjie Ge , Shuo Yin , Rocco Lupoi , Wenya Li , Xinkun Suo\",\"doi\":\"10.1016/j.surfin.2024.105422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrophobic/hydrophilic coatings are widely applied in healthcare, construction, and electronic devices. However, low-cost preparation of coatings is a challenge because they are often associated with complex procedures and adverse environmental impacts. Therefore, an innovative low-cost and environmentally friendly laser spraying technology was employed to fabricate hydrophobic and hydrophilic Ni coatings. The wettability of the coatings was regulated by systematically varying laser power and substrate temperature. The Ni particles presented spherical morphology, low oxidation rate and low coverage rate (4 %) with a laser power of 3000 W and room temperature substrate, yielding a hydrophobic coating with a water contact angle of 125.9 ± 17.2° Conversely, Ni particles exhibited oblate spherical morphology, higher oxidation rate, higher coverage rate (95 %) and a porous structure with a laser power of 5400 W and a substrate temperature of 700 °C, resulting in a hydrophilic coating with a water contact angle of 8.4 ± 1.2° These findings demonstrate a novel approach for tailoring the wettability of the Ni coatings, offering new insights into the fabrication of functional coatings for various applications.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"55 \",\"pages\":\"Article 105422\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024015785\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015785","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Hydrophobic/hydrophilic surfaces constructed using laser spraying: A new route
Hydrophobic/hydrophilic coatings are widely applied in healthcare, construction, and electronic devices. However, low-cost preparation of coatings is a challenge because they are often associated with complex procedures and adverse environmental impacts. Therefore, an innovative low-cost and environmentally friendly laser spraying technology was employed to fabricate hydrophobic and hydrophilic Ni coatings. The wettability of the coatings was regulated by systematically varying laser power and substrate temperature. The Ni particles presented spherical morphology, low oxidation rate and low coverage rate (4 %) with a laser power of 3000 W and room temperature substrate, yielding a hydrophobic coating with a water contact angle of 125.9 ± 17.2° Conversely, Ni particles exhibited oblate spherical morphology, higher oxidation rate, higher coverage rate (95 %) and a porous structure with a laser power of 5400 W and a substrate temperature of 700 °C, resulting in a hydrophilic coating with a water contact angle of 8.4 ± 1.2° These findings demonstrate a novel approach for tailoring the wettability of the Ni coatings, offering new insights into the fabrication of functional coatings for various applications.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)