Tengfeng Yan , Qiuye Liao , Zhihao Chen , Yang Xu , Wenping Zhu , Ping Hu , Si Zhang , Yanze Wu , Lei Shu , Junzhe Liu , Min Luo , Hongxin Shu , Yilei Sheng , Li Wang , Chun Xu , Chang Lei , Hongming Wang , Qingsong Ye , Li Yang , Xingen Zhu
{"title":"β-酮胺共价有机框架纳米平台结合光动力免疫疗法的免疫检查点阻断抑制胶质母细胞瘤进展","authors":"Tengfeng Yan , Qiuye Liao , Zhihao Chen , Yang Xu , Wenping Zhu , Ping Hu , Si Zhang , Yanze Wu , Lei Shu , Junzhe Liu , Min Luo , Hongxin Shu , Yilei Sheng , Li Wang , Chun Xu , Chang Lei , Hongming Wang , Qingsong Ye , Li Yang , Xingen Zhu","doi":"10.1016/j.bioactmat.2024.10.029","DOIUrl":null,"url":null,"abstract":"<div><div>The synergistic approach of combining photodynamic immunotherapy with endogenous clearance of PD-L1 immune checkpoint blockade therapy holds promise for enhancing survival outcomes in glioblastoma (GBM) patients. The observed upregulation of O-GlcNAc glycolysis in tumors may contribute to the stabilization of endogenous PD-L1 protein, facilitating tumor immune evasion. This study presents a pH-adapted excited state intramolecular proton transfer (ESIPT)-isomerized β-ketoamide-based covalent organic framework (COF) nanoplatform (denoted as OT@COF-RVG). Temozolomide (TMZ) and OSMI-4 (O-GlcNAc transferase inhibitor) were integrated into COF cavities, then modified on the surface with polyethylene glycol and the rabies virus peptide RVG-29, showing potential for sensitizing TMZ chemotherapy and initiating photodynamic therapy (PDT). By inhibiting O-GlcNAc and promoting lysosomal degradation of PD-L1, OT@COF-RVG enhanced the effectiveness of immune checkpoint blockade (ICB) therapy. Additionally, treatment with OT@COF-RVG led to a notable elevation in reactive oxygen species (ROS) levels, thereby re-establishing an immunostimulatory state, inducing immunogenic cell death (ICD). In summary, our research unveiled a correlation between O-GlcNAc in GBM and the evasion of immune responses by tumors, while showcasing the potential of OT@COF-RVG in reshaping the immunosuppressive microenvironment of GBM and offering a more effective approach to immunotherapy in clinical settings.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"44 ","pages":"Pages 531-543"},"PeriodicalIF":18.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β-Ketoenamine covalent organic framework nanoplatform combined with immune checkpoint blockade via photodynamic immunotherapy inhibit glioblastoma progression\",\"authors\":\"Tengfeng Yan , Qiuye Liao , Zhihao Chen , Yang Xu , Wenping Zhu , Ping Hu , Si Zhang , Yanze Wu , Lei Shu , Junzhe Liu , Min Luo , Hongxin Shu , Yilei Sheng , Li Wang , Chun Xu , Chang Lei , Hongming Wang , Qingsong Ye , Li Yang , Xingen Zhu\",\"doi\":\"10.1016/j.bioactmat.2024.10.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The synergistic approach of combining photodynamic immunotherapy with endogenous clearance of PD-L1 immune checkpoint blockade therapy holds promise for enhancing survival outcomes in glioblastoma (GBM) patients. The observed upregulation of O-GlcNAc glycolysis in tumors may contribute to the stabilization of endogenous PD-L1 protein, facilitating tumor immune evasion. This study presents a pH-adapted excited state intramolecular proton transfer (ESIPT)-isomerized β-ketoamide-based covalent organic framework (COF) nanoplatform (denoted as OT@COF-RVG). Temozolomide (TMZ) and OSMI-4 (O-GlcNAc transferase inhibitor) were integrated into COF cavities, then modified on the surface with polyethylene glycol and the rabies virus peptide RVG-29, showing potential for sensitizing TMZ chemotherapy and initiating photodynamic therapy (PDT). By inhibiting O-GlcNAc and promoting lysosomal degradation of PD-L1, OT@COF-RVG enhanced the effectiveness of immune checkpoint blockade (ICB) therapy. Additionally, treatment with OT@COF-RVG led to a notable elevation in reactive oxygen species (ROS) levels, thereby re-establishing an immunostimulatory state, inducing immunogenic cell death (ICD). In summary, our research unveiled a correlation between O-GlcNAc in GBM and the evasion of immune responses by tumors, while showcasing the potential of OT@COF-RVG in reshaping the immunosuppressive microenvironment of GBM and offering a more effective approach to immunotherapy in clinical settings.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"44 \",\"pages\":\"Pages 531-543\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X24004821\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24004821","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
β-Ketoenamine covalent organic framework nanoplatform combined with immune checkpoint blockade via photodynamic immunotherapy inhibit glioblastoma progression
The synergistic approach of combining photodynamic immunotherapy with endogenous clearance of PD-L1 immune checkpoint blockade therapy holds promise for enhancing survival outcomes in glioblastoma (GBM) patients. The observed upregulation of O-GlcNAc glycolysis in tumors may contribute to the stabilization of endogenous PD-L1 protein, facilitating tumor immune evasion. This study presents a pH-adapted excited state intramolecular proton transfer (ESIPT)-isomerized β-ketoamide-based covalent organic framework (COF) nanoplatform (denoted as OT@COF-RVG). Temozolomide (TMZ) and OSMI-4 (O-GlcNAc transferase inhibitor) were integrated into COF cavities, then modified on the surface with polyethylene glycol and the rabies virus peptide RVG-29, showing potential for sensitizing TMZ chemotherapy and initiating photodynamic therapy (PDT). By inhibiting O-GlcNAc and promoting lysosomal degradation of PD-L1, OT@COF-RVG enhanced the effectiveness of immune checkpoint blockade (ICB) therapy. Additionally, treatment with OT@COF-RVG led to a notable elevation in reactive oxygen species (ROS) levels, thereby re-establishing an immunostimulatory state, inducing immunogenic cell death (ICD). In summary, our research unveiled a correlation between O-GlcNAc in GBM and the evasion of immune responses by tumors, while showcasing the potential of OT@COF-RVG in reshaping the immunosuppressive microenvironment of GBM and offering a more effective approach to immunotherapy in clinical settings.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.