{"title":"创新性螺旋神经导管:解决临界尺寸神经缺损的营养运输和细胞活动问题","authors":"Allen Zennifer , S.K. Praveenn Kumar , Shambhavi Bagewadi , Swathi Unnamalai , Davidraj Chellappan , Sama Abdulmalik , Xiaojun Yu , Swaminathan Sethuraman , Dhakshinamoorthy Sundaramurthi , Sangamesh G. Kumbar","doi":"10.1016/j.bioactmat.2024.10.028","DOIUrl":null,"url":null,"abstract":"<div><div>Large-gap nerve defects require nerve guide conduits (NGCs) for complete regeneration and muscle innervation. Many NGCs have been developed using various scaffold designs and tissue engineering strategies to promote axon regeneration. Still, most are tubular with inadequate pore sizes and lack surface cues for nutrient transport, cell attachment, and tissue infiltration. This study developed a porous spiral NGC to address these issues using a 3D-printed thermoplastic polyurethane (TPU) fiber lattice. The lattice was functionalized with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun aligned (aPHBV) and randomly (rPHBV) oriented nanofibers to enhance cellular activity. TPU lattices were made with 25 %, 35 %, and 50 % infill densities to create scaffolds with varied mechanical compliance. The fabricated TPU/PHBV spiral conduits had significantly higher surface areas (25 % TPU/PHBV: 698.97 mm<sup>2</sup>, 35 % TPU/PHBV: 500.06 mm<sup>2</sup>, 50 % TPU/PHBV: 327.61 mm<sup>2</sup>) compared to commercially available nerve conduits like Neurolac™ (205.26 mm<sup>2</sup>). Aligned PHBV nanofibers showed excellent Schwann cell (RSC96) adhesion, proliferation, and neurogenic gene expression for all infill densities. Spiral TPU/PHBV conduits with 25 % and 35 % infill densities exhibited Young's modulus values comparable to Neurotube® and ultimate tensile strength like acellular cadaveric human nerves. A 10 mm sciatic nerve defect in Wistar rats treated with TPU/aPHBV NGCs demonstrated muscle innervation and axon healing comparable to autografts over 4 months, as evaluated by gait analysis, functional recovery, and histology. The TPU/PHBV NGC developed in this study shows promise as a treatment for large-gap nerve defects.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"44 ","pages":"Pages 544-557"},"PeriodicalIF":18.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative spiral nerve conduits: Addressing nutrient transport and cellular activity for critical-sized nerve defects\",\"authors\":\"Allen Zennifer , S.K. Praveenn Kumar , Shambhavi Bagewadi , Swathi Unnamalai , Davidraj Chellappan , Sama Abdulmalik , Xiaojun Yu , Swaminathan Sethuraman , Dhakshinamoorthy Sundaramurthi , Sangamesh G. Kumbar\",\"doi\":\"10.1016/j.bioactmat.2024.10.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large-gap nerve defects require nerve guide conduits (NGCs) for complete regeneration and muscle innervation. Many NGCs have been developed using various scaffold designs and tissue engineering strategies to promote axon regeneration. Still, most are tubular with inadequate pore sizes and lack surface cues for nutrient transport, cell attachment, and tissue infiltration. This study developed a porous spiral NGC to address these issues using a 3D-printed thermoplastic polyurethane (TPU) fiber lattice. The lattice was functionalized with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun aligned (aPHBV) and randomly (rPHBV) oriented nanofibers to enhance cellular activity. TPU lattices were made with 25 %, 35 %, and 50 % infill densities to create scaffolds with varied mechanical compliance. The fabricated TPU/PHBV spiral conduits had significantly higher surface areas (25 % TPU/PHBV: 698.97 mm<sup>2</sup>, 35 % TPU/PHBV: 500.06 mm<sup>2</sup>, 50 % TPU/PHBV: 327.61 mm<sup>2</sup>) compared to commercially available nerve conduits like Neurolac™ (205.26 mm<sup>2</sup>). Aligned PHBV nanofibers showed excellent Schwann cell (RSC96) adhesion, proliferation, and neurogenic gene expression for all infill densities. Spiral TPU/PHBV conduits with 25 % and 35 % infill densities exhibited Young's modulus values comparable to Neurotube® and ultimate tensile strength like acellular cadaveric human nerves. A 10 mm sciatic nerve defect in Wistar rats treated with TPU/aPHBV NGCs demonstrated muscle innervation and axon healing comparable to autografts over 4 months, as evaluated by gait analysis, functional recovery, and histology. The TPU/PHBV NGC developed in this study shows promise as a treatment for large-gap nerve defects.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"44 \",\"pages\":\"Pages 544-557\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X2400481X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X2400481X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Innovative spiral nerve conduits: Addressing nutrient transport and cellular activity for critical-sized nerve defects
Large-gap nerve defects require nerve guide conduits (NGCs) for complete regeneration and muscle innervation. Many NGCs have been developed using various scaffold designs and tissue engineering strategies to promote axon regeneration. Still, most are tubular with inadequate pore sizes and lack surface cues for nutrient transport, cell attachment, and tissue infiltration. This study developed a porous spiral NGC to address these issues using a 3D-printed thermoplastic polyurethane (TPU) fiber lattice. The lattice was functionalized with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun aligned (aPHBV) and randomly (rPHBV) oriented nanofibers to enhance cellular activity. TPU lattices were made with 25 %, 35 %, and 50 % infill densities to create scaffolds with varied mechanical compliance. The fabricated TPU/PHBV spiral conduits had significantly higher surface areas (25 % TPU/PHBV: 698.97 mm2, 35 % TPU/PHBV: 500.06 mm2, 50 % TPU/PHBV: 327.61 mm2) compared to commercially available nerve conduits like Neurolac™ (205.26 mm2). Aligned PHBV nanofibers showed excellent Schwann cell (RSC96) adhesion, proliferation, and neurogenic gene expression for all infill densities. Spiral TPU/PHBV conduits with 25 % and 35 % infill densities exhibited Young's modulus values comparable to Neurotube® and ultimate tensile strength like acellular cadaveric human nerves. A 10 mm sciatic nerve defect in Wistar rats treated with TPU/aPHBV NGCs demonstrated muscle innervation and axon healing comparable to autografts over 4 months, as evaluated by gait analysis, functional recovery, and histology. The TPU/PHBV NGC developed in this study shows promise as a treatment for large-gap nerve defects.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.