Mengtong Chen , Qinran Hu , Tao Qian , Xinyi Chen , Rushuai Han , Yongxu Zhu
{"title":"基于学习的灵活负载聚合,用于共同模拟输配电网络中的二次频率调节","authors":"Mengtong Chen , Qinran Hu , Tao Qian , Xinyi Chen , Rushuai Han , Yongxu Zhu","doi":"10.1016/j.ijepes.2024.110339","DOIUrl":null,"url":null,"abstract":"<div><div>Aggregated flexible loads offer a promising solution for secondary frequency regulation (SFR) in power systems with increasing intermittent renewable energy sources. However, uncertainties in users’ behaviors may create a mismatch between the aggregated power of flexible loads and the control target of SFR. Furthermore, as these loads are dispersed across distribution networks, distribution network’s topology and its interplay with the transmission network may affect the performance of aggregated flexible loads in SFR. Therefore, this paper proposes an adaptive combinatorial multi-armed bandit (CMAB) flexible load aggregation strategy to enhance SFR performance in co-simulated transmission and distribution (T&D) networks. First, a dynamic T&D co-simulation framework is proposed based on the HELICS platform. Then, the combinatorial upper confidence bound-average (CUCB-Avg)-based CMAB algorithm is employed to manage users’ uncertain responses. Case studies on the IEEE 14-bus system with five IEEE 8,500-node feeders demonstrate the effectiveness of the proposed framework and method. The SFR performance of the proposed strategy based on CUCB-Avg algorithm outperforms the average and CUCB strategies in terms of accuracy, rapidity, robustness, and the number of affected users.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"163 ","pages":"Article 110339"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-based flexible load aggregation for secondary frequency regulation in co-simulated transmission and distribution networks\",\"authors\":\"Mengtong Chen , Qinran Hu , Tao Qian , Xinyi Chen , Rushuai Han , Yongxu Zhu\",\"doi\":\"10.1016/j.ijepes.2024.110339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aggregated flexible loads offer a promising solution for secondary frequency regulation (SFR) in power systems with increasing intermittent renewable energy sources. However, uncertainties in users’ behaviors may create a mismatch between the aggregated power of flexible loads and the control target of SFR. Furthermore, as these loads are dispersed across distribution networks, distribution network’s topology and its interplay with the transmission network may affect the performance of aggregated flexible loads in SFR. Therefore, this paper proposes an adaptive combinatorial multi-armed bandit (CMAB) flexible load aggregation strategy to enhance SFR performance in co-simulated transmission and distribution (T&D) networks. First, a dynamic T&D co-simulation framework is proposed based on the HELICS platform. Then, the combinatorial upper confidence bound-average (CUCB-Avg)-based CMAB algorithm is employed to manage users’ uncertain responses. Case studies on the IEEE 14-bus system with five IEEE 8,500-node feeders demonstrate the effectiveness of the proposed framework and method. The SFR performance of the proposed strategy based on CUCB-Avg algorithm outperforms the average and CUCB strategies in terms of accuracy, rapidity, robustness, and the number of affected users.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"163 \",\"pages\":\"Article 110339\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061524005623\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524005623","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Learning-based flexible load aggregation for secondary frequency regulation in co-simulated transmission and distribution networks
Aggregated flexible loads offer a promising solution for secondary frequency regulation (SFR) in power systems with increasing intermittent renewable energy sources. However, uncertainties in users’ behaviors may create a mismatch between the aggregated power of flexible loads and the control target of SFR. Furthermore, as these loads are dispersed across distribution networks, distribution network’s topology and its interplay with the transmission network may affect the performance of aggregated flexible loads in SFR. Therefore, this paper proposes an adaptive combinatorial multi-armed bandit (CMAB) flexible load aggregation strategy to enhance SFR performance in co-simulated transmission and distribution (T&D) networks. First, a dynamic T&D co-simulation framework is proposed based on the HELICS platform. Then, the combinatorial upper confidence bound-average (CUCB-Avg)-based CMAB algorithm is employed to manage users’ uncertain responses. Case studies on the IEEE 14-bus system with five IEEE 8,500-node feeders demonstrate the effectiveness of the proposed framework and method. The SFR performance of the proposed strategy based on CUCB-Avg algorithm outperforms the average and CUCB strategies in terms of accuracy, rapidity, robustness, and the number of affected users.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.