Zhenwu Zeng , Jiayu Wang , Can Tian , Fangfei Li , Tian Cui
{"title":"高压高温合成新型碳化硼相","authors":"Zhenwu Zeng , Jiayu Wang , Can Tian , Fangfei Li , Tian Cui","doi":"10.1016/j.ssc.2024.115752","DOIUrl":null,"url":null,"abstract":"<div><div>The dense boron carbide (B-C) phases with diamond structure are predicted to be superhard, with hardness close to that of a cubic boron nitride (c-BN). At ambient conditions, graphite-like BC<sub>3</sub> is well characterized, firstly reported by Kouvetakis et al. In this work, we have synthesized a new B-C phase from the graphite-like BC<sub>3</sub> in a laser-heated diamond anvil cell. Interestingly, this phase could be recoverable to ambient pressure due to dynamic stabilities. The Raman spectrum and X-ray diffraction patterns give the possible structure of this new phase.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"396 ","pages":"Article 115752"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High pressure and high temperature synthesis of a new boron carbide phase\",\"authors\":\"Zhenwu Zeng , Jiayu Wang , Can Tian , Fangfei Li , Tian Cui\",\"doi\":\"10.1016/j.ssc.2024.115752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The dense boron carbide (B-C) phases with diamond structure are predicted to be superhard, with hardness close to that of a cubic boron nitride (c-BN). At ambient conditions, graphite-like BC<sub>3</sub> is well characterized, firstly reported by Kouvetakis et al. In this work, we have synthesized a new B-C phase from the graphite-like BC<sub>3</sub> in a laser-heated diamond anvil cell. Interestingly, this phase could be recoverable to ambient pressure due to dynamic stabilities. The Raman spectrum and X-ray diffraction patterns give the possible structure of this new phase.</div></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"396 \",\"pages\":\"Article 115752\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109824003296\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003296","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
据预测,具有金刚石结构的致密碳化硼(B-C)相具有超硬特性,硬度接近立方氮化硼(c-BN)。在这项工作中,我们在激光加热的金刚石砧槽中从类石墨 BC3 合成了一种新的 B-C 相。有趣的是,由于动态稳定性,这种相可以在环境压力下恢复。拉曼光谱和 X 射线衍射图样给出了这种新相的可能结构。
High pressure and high temperature synthesis of a new boron carbide phase
The dense boron carbide (B-C) phases with diamond structure are predicted to be superhard, with hardness close to that of a cubic boron nitride (c-BN). At ambient conditions, graphite-like BC3 is well characterized, firstly reported by Kouvetakis et al. In this work, we have synthesized a new B-C phase from the graphite-like BC3 in a laser-heated diamond anvil cell. Interestingly, this phase could be recoverable to ambient pressure due to dynamic stabilities. The Raman spectrum and X-ray diffraction patterns give the possible structure of this new phase.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.