单向复合材料现实纤维错位的统计特征:拟合分布和扫描长度效应

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL Thin-Walled Structures Pub Date : 2024-11-01 DOI:10.1016/j.tws.2024.112621
Tao Zheng , Fenghao Jia , Zhongyu Wang , Zhanguang Chen , Fengnan Guo , Licheng Guo
{"title":"单向复合材料现实纤维错位的统计特征:拟合分布和扫描长度效应","authors":"Tao Zheng ,&nbsp;Fenghao Jia ,&nbsp;Zhongyu Wang ,&nbsp;Zhanguang Chen ,&nbsp;Fengnan Guo ,&nbsp;Licheng Guo","doi":"10.1016/j.tws.2024.112621","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a comprehensive study on the statistical characteristics of angle, tortuosity, curvature and wave magnitude to deepen the understanding of realistic fiber misalignments within unidirectional composites. A feasible fiber path reconstruction procedure has been optimized, which can be applicable to other types of composites. The high-resolution micrographs are acquired through X-ray computed tomography. The individual fiber segmentation is implemented using a U-Net deep learning method, and the fiber trajectories are reconstructed with the aid of a tracing algorithm. The stepped fiber trajectories are slightly smoothed and a polynomial fitting formula is adopted to quantitatively describe the fiber paths. The statistical characteristics corresponding to the differential tortuosity, misalignment angle, spatial curvature and wave magnitudes are comprehensively analyzed, with emphasis on their fitting distributions and scanning length effects. The collected data indicate that the statistical distributions of differential tortuosity and angle, curvature, and wave magnitude can be well fitted by normal, lognormal and Weibull equations, respectively. Particularly, the differential tortuosity and wave magnitude are overall features of individual fiber trajectory, which are highly correlated with the scanning length. In contrast, the angle and curvature are local features, so a smaller scanning length could obtain convergent results.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112621"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical characteristics of realistic fiber misalignments of unidirectional composites: Fitting distributions and scanning length effects\",\"authors\":\"Tao Zheng ,&nbsp;Fenghao Jia ,&nbsp;Zhongyu Wang ,&nbsp;Zhanguang Chen ,&nbsp;Fengnan Guo ,&nbsp;Licheng Guo\",\"doi\":\"10.1016/j.tws.2024.112621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a comprehensive study on the statistical characteristics of angle, tortuosity, curvature and wave magnitude to deepen the understanding of realistic fiber misalignments within unidirectional composites. A feasible fiber path reconstruction procedure has been optimized, which can be applicable to other types of composites. The high-resolution micrographs are acquired through X-ray computed tomography. The individual fiber segmentation is implemented using a U-Net deep learning method, and the fiber trajectories are reconstructed with the aid of a tracing algorithm. The stepped fiber trajectories are slightly smoothed and a polynomial fitting formula is adopted to quantitatively describe the fiber paths. The statistical characteristics corresponding to the differential tortuosity, misalignment angle, spatial curvature and wave magnitudes are comprehensively analyzed, with emphasis on their fitting distributions and scanning length effects. The collected data indicate that the statistical distributions of differential tortuosity and angle, curvature, and wave magnitude can be well fitted by normal, lognormal and Weibull equations, respectively. Particularly, the differential tortuosity and wave magnitude are overall features of individual fiber trajectory, which are highly correlated with the scanning length. In contrast, the angle and curvature are local features, so a smaller scanning length could obtain convergent results.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"206 \",\"pages\":\"Article 112621\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263823124010619\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010619","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文对角度、迂回度、曲率和波幅的统计特征进行了全面研究,以加深对单向复合材料中现实纤维错位的理解。研究优化了可行的纤维路径重建程序,该程序可适用于其他类型的复合材料。高分辨率显微照片是通过 X 射线计算机断层扫描获得的。使用 U-Net 深度学习方法对单根纤维进行分割,并借助追踪算法重建纤维轨迹。对阶梯状纤维轨迹进行轻微平滑处理,并采用多项式拟合公式对纤维路径进行定量描述。对迂回差、错位角、空间曲率和波幅对应的统计特征进行了综合分析,重点分析了它们的拟合分布和扫描长度效应。采集的数据表明,微分迂回度和角度、曲率和波幅的统计分布分别可以很好地用正态、对数正态和威布尔方程拟合。特别是,微差迂曲度和波幅是单个纤维轨迹的整体特征,与扫描长度高度相关。相比之下,角度和曲率是局部特征,因此较小的扫描长度也能得到趋同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical characteristics of realistic fiber misalignments of unidirectional composites: Fitting distributions and scanning length effects
This paper presents a comprehensive study on the statistical characteristics of angle, tortuosity, curvature and wave magnitude to deepen the understanding of realistic fiber misalignments within unidirectional composites. A feasible fiber path reconstruction procedure has been optimized, which can be applicable to other types of composites. The high-resolution micrographs are acquired through X-ray computed tomography. The individual fiber segmentation is implemented using a U-Net deep learning method, and the fiber trajectories are reconstructed with the aid of a tracing algorithm. The stepped fiber trajectories are slightly smoothed and a polynomial fitting formula is adopted to quantitatively describe the fiber paths. The statistical characteristics corresponding to the differential tortuosity, misalignment angle, spatial curvature and wave magnitudes are comprehensively analyzed, with emphasis on their fitting distributions and scanning length effects. The collected data indicate that the statistical distributions of differential tortuosity and angle, curvature, and wave magnitude can be well fitted by normal, lognormal and Weibull equations, respectively. Particularly, the differential tortuosity and wave magnitude are overall features of individual fiber trajectory, which are highly correlated with the scanning length. In contrast, the angle and curvature are local features, so a smaller scanning length could obtain convergent results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
期刊最新文献
Editorial Board Comparative study on collapse behavior of modular steel buildings: Experiment and analysis Local-global buckling interaction in steel I-beams—A European design proposal for the case of fire Impact resistance performance of 3D woven TZ800H plates with different textile architecture Integrated optimization of ply number, layer thickness, and fiber angle for variable-stiffness composites using dynamic multi-fidelity surrogate model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1