Damir Akchurin , Shahabeddin Torabian , Benjamin W. Schafer
{"title":"高强度冷弯加劲槽钢截面:轴向抗压强度和初始几何缺陷","authors":"Damir Akchurin , Shahabeddin Torabian , Benjamin W. Schafer","doi":"10.1016/j.tws.2024.112604","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a summary of experimental findings from axial compression tests on columns featuring a cold-formed lipped channel section with intermediate stiffeners and return lips, roll-formed from high-strength low-allow steel with a nominal yield strength of 690 MPa (100 ksi). Additionally, the paper provides an analysis of the elastic stability of the studied section, a complete description of the initial geometric imperfections of the tested columns, results of tensile coupon tests, and comparison of the observed strengths of the columns with design predictions. The results provide important additional benchmarks for the wider adoption of high-strength cold-formed steel sections and indicate conditions where existing design methods may be reliably extended.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112604"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-strength cold-formed steel stiffened channel section: Axial compressive strength and initial geometric imperfections\",\"authors\":\"Damir Akchurin , Shahabeddin Torabian , Benjamin W. Schafer\",\"doi\":\"10.1016/j.tws.2024.112604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a summary of experimental findings from axial compression tests on columns featuring a cold-formed lipped channel section with intermediate stiffeners and return lips, roll-formed from high-strength low-allow steel with a nominal yield strength of 690 MPa (100 ksi). Additionally, the paper provides an analysis of the elastic stability of the studied section, a complete description of the initial geometric imperfections of the tested columns, results of tensile coupon tests, and comparison of the observed strengths of the columns with design predictions. The results provide important additional benchmarks for the wider adoption of high-strength cold-formed steel sections and indicate conditions where existing design methods may be reliably extended.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"206 \",\"pages\":\"Article 112604\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263823124010449\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010449","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
This paper presents a summary of experimental findings from axial compression tests on columns featuring a cold-formed lipped channel section with intermediate stiffeners and return lips, roll-formed from high-strength low-allow steel with a nominal yield strength of 690 MPa (100 ksi). Additionally, the paper provides an analysis of the elastic stability of the studied section, a complete description of the initial geometric imperfections of the tested columns, results of tensile coupon tests, and comparison of the observed strengths of the columns with design predictions. The results provide important additional benchmarks for the wider adoption of high-strength cold-formed steel sections and indicate conditions where existing design methods may be reliably extended.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.