{"title":"优化伯格模型线性粘弹特性的频率范围","authors":"Chen Wang, Kumar Anupam, Cor Kasbergen, Sandra Erkens","doi":"10.1016/j.ijmecsci.2024.109817","DOIUrl":null,"url":null,"abstract":"<div><div>The linear viscoelastic behavior of materials is represented using mechanical models of choice, which are further utilized in different numerical investigations, such as finite element simulations and discrete element simulations. Burger's model is one of the widely adopted mechanical models and remains highly favored in contemporary research due to its multiple advantages. Specifically, it excels in representing long-term creep and stress relaxation behavior in a relatively simplified manner. Accurate identification of the long-term behavior for the viscoelastic material, particularly asphalt concrete, is crucial, as it serves as a key indicator of asphalt pavement performance over its service life. However, past research studies show that the parameters of Burger's model should be back-calculated from experimental data only within a limited range of frequency, otherwise, the parameters fail to represent the true material behavior. To the best of the authors’ knowledge, there is no approach for researchers to obtain the critical frequency range in which the experiments should be performed. Therefore, this study proposes a novel framework to find the critical frequency range to obtain appropriate model parameters of Burger's model, to better characterize the viscoelastic behavior of the materials. To examine the framework, asphalt concrete mixtures are used as examples in this study. Necessary laboratory tests including complex modulus tests and stress relaxation tests, are performed on two distinctive types of asphalt concrete mixtures. The generalized Maxwell model with different number of Maxwell chains are used to evaluate the performance of Burger's model. Furthermore, since commercially available finite element packages generally do not have a direct built-in Burger's model, the article shows a way of implementing Burger's model in finite element simulation. The simulations corresponding to the laboratory tests are carried out in both frequency domain and time domain to thoroughly evaluate the performance of Burger's model. The optimal frequency range of 0.1–20 Hz for the examined mixtures is found to significantly improve the accuracy of the descriptive master curve. The results also suggest that the generalized Maxwell model requires a minimum of four Maxwell chains to maintain good performance in accurately characterizing the behavior of asphalt mixtures. However, adding more Maxwell chains beyond a critical limit may not provide significant benefits. Finite element simulations demonstrate that the stress relaxation behavior predicted by the obtained Burger's model parameters aligns more closely with experimental data over longer time intervals. This makes Burger's model a strong choice for aiding in the design of simulations for studies focused on the long-term behavior of materials.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109817"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency range optimization for linear viscoelastic characterization of Burger's model\",\"authors\":\"Chen Wang, Kumar Anupam, Cor Kasbergen, Sandra Erkens\",\"doi\":\"10.1016/j.ijmecsci.2024.109817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The linear viscoelastic behavior of materials is represented using mechanical models of choice, which are further utilized in different numerical investigations, such as finite element simulations and discrete element simulations. Burger's model is one of the widely adopted mechanical models and remains highly favored in contemporary research due to its multiple advantages. Specifically, it excels in representing long-term creep and stress relaxation behavior in a relatively simplified manner. Accurate identification of the long-term behavior for the viscoelastic material, particularly asphalt concrete, is crucial, as it serves as a key indicator of asphalt pavement performance over its service life. However, past research studies show that the parameters of Burger's model should be back-calculated from experimental data only within a limited range of frequency, otherwise, the parameters fail to represent the true material behavior. To the best of the authors’ knowledge, there is no approach for researchers to obtain the critical frequency range in which the experiments should be performed. Therefore, this study proposes a novel framework to find the critical frequency range to obtain appropriate model parameters of Burger's model, to better characterize the viscoelastic behavior of the materials. To examine the framework, asphalt concrete mixtures are used as examples in this study. Necessary laboratory tests including complex modulus tests and stress relaxation tests, are performed on two distinctive types of asphalt concrete mixtures. The generalized Maxwell model with different number of Maxwell chains are used to evaluate the performance of Burger's model. Furthermore, since commercially available finite element packages generally do not have a direct built-in Burger's model, the article shows a way of implementing Burger's model in finite element simulation. The simulations corresponding to the laboratory tests are carried out in both frequency domain and time domain to thoroughly evaluate the performance of Burger's model. The optimal frequency range of 0.1–20 Hz for the examined mixtures is found to significantly improve the accuracy of the descriptive master curve. The results also suggest that the generalized Maxwell model requires a minimum of four Maxwell chains to maintain good performance in accurately characterizing the behavior of asphalt mixtures. However, adding more Maxwell chains beyond a critical limit may not provide significant benefits. Finite element simulations demonstrate that the stress relaxation behavior predicted by the obtained Burger's model parameters aligns more closely with experimental data over longer time intervals. This makes Burger's model a strong choice for aiding in the design of simulations for studies focused on the long-term behavior of materials.</div></div>\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":\"285 \",\"pages\":\"Article 109817\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020740324008580\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324008580","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Frequency range optimization for linear viscoelastic characterization of Burger's model
The linear viscoelastic behavior of materials is represented using mechanical models of choice, which are further utilized in different numerical investigations, such as finite element simulations and discrete element simulations. Burger's model is one of the widely adopted mechanical models and remains highly favored in contemporary research due to its multiple advantages. Specifically, it excels in representing long-term creep and stress relaxation behavior in a relatively simplified manner. Accurate identification of the long-term behavior for the viscoelastic material, particularly asphalt concrete, is crucial, as it serves as a key indicator of asphalt pavement performance over its service life. However, past research studies show that the parameters of Burger's model should be back-calculated from experimental data only within a limited range of frequency, otherwise, the parameters fail to represent the true material behavior. To the best of the authors’ knowledge, there is no approach for researchers to obtain the critical frequency range in which the experiments should be performed. Therefore, this study proposes a novel framework to find the critical frequency range to obtain appropriate model parameters of Burger's model, to better characterize the viscoelastic behavior of the materials. To examine the framework, asphalt concrete mixtures are used as examples in this study. Necessary laboratory tests including complex modulus tests and stress relaxation tests, are performed on two distinctive types of asphalt concrete mixtures. The generalized Maxwell model with different number of Maxwell chains are used to evaluate the performance of Burger's model. Furthermore, since commercially available finite element packages generally do not have a direct built-in Burger's model, the article shows a way of implementing Burger's model in finite element simulation. The simulations corresponding to the laboratory tests are carried out in both frequency domain and time domain to thoroughly evaluate the performance of Burger's model. The optimal frequency range of 0.1–20 Hz for the examined mixtures is found to significantly improve the accuracy of the descriptive master curve. The results also suggest that the generalized Maxwell model requires a minimum of four Maxwell chains to maintain good performance in accurately characterizing the behavior of asphalt mixtures. However, adding more Maxwell chains beyond a critical limit may not provide significant benefits. Finite element simulations demonstrate that the stress relaxation behavior predicted by the obtained Burger's model parameters aligns more closely with experimental data over longer time intervals. This makes Burger's model a strong choice for aiding in the design of simulations for studies focused on the long-term behavior of materials.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.