优化伯格模型线性粘弹特性的频率范围

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Mechanical Sciences Pub Date : 2024-11-09 DOI:10.1016/j.ijmecsci.2024.109817
Chen Wang, Kumar Anupam, Cor Kasbergen, Sandra Erkens
{"title":"优化伯格模型线性粘弹特性的频率范围","authors":"Chen Wang,&nbsp;Kumar Anupam,&nbsp;Cor Kasbergen,&nbsp;Sandra Erkens","doi":"10.1016/j.ijmecsci.2024.109817","DOIUrl":null,"url":null,"abstract":"<div><div>The linear viscoelastic behavior of materials is represented using mechanical models of choice, which are further utilized in different numerical investigations, such as finite element simulations and discrete element simulations. Burger's model is one of the widely adopted mechanical models and remains highly favored in contemporary research due to its multiple advantages. Specifically, it excels in representing long-term creep and stress relaxation behavior in a relatively simplified manner. Accurate identification of the long-term behavior for the viscoelastic material, particularly asphalt concrete, is crucial, as it serves as a key indicator of asphalt pavement performance over its service life. However, past research studies show that the parameters of Burger's model should be back-calculated from experimental data only within a limited range of frequency, otherwise, the parameters fail to represent the true material behavior. To the best of the authors’ knowledge, there is no approach for researchers to obtain the critical frequency range in which the experiments should be performed. Therefore, this study proposes a novel framework to find the critical frequency range to obtain appropriate model parameters of Burger's model, to better characterize the viscoelastic behavior of the materials. To examine the framework, asphalt concrete mixtures are used as examples in this study. Necessary laboratory tests including complex modulus tests and stress relaxation tests, are performed on two distinctive types of asphalt concrete mixtures. The generalized Maxwell model with different number of Maxwell chains are used to evaluate the performance of Burger's model. Furthermore, since commercially available finite element packages generally do not have a direct built-in Burger's model, the article shows a way of implementing Burger's model in finite element simulation. The simulations corresponding to the laboratory tests are carried out in both frequency domain and time domain to thoroughly evaluate the performance of Burger's model. The optimal frequency range of 0.1–20 Hz for the examined mixtures is found to significantly improve the accuracy of the descriptive master curve. The results also suggest that the generalized Maxwell model requires a minimum of four Maxwell chains to maintain good performance in accurately characterizing the behavior of asphalt mixtures. However, adding more Maxwell chains beyond a critical limit may not provide significant benefits. Finite element simulations demonstrate that the stress relaxation behavior predicted by the obtained Burger's model parameters aligns more closely with experimental data over longer time intervals. This makes Burger's model a strong choice for aiding in the design of simulations for studies focused on the long-term behavior of materials.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109817"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency range optimization for linear viscoelastic characterization of Burger's model\",\"authors\":\"Chen Wang,&nbsp;Kumar Anupam,&nbsp;Cor Kasbergen,&nbsp;Sandra Erkens\",\"doi\":\"10.1016/j.ijmecsci.2024.109817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The linear viscoelastic behavior of materials is represented using mechanical models of choice, which are further utilized in different numerical investigations, such as finite element simulations and discrete element simulations. Burger's model is one of the widely adopted mechanical models and remains highly favored in contemporary research due to its multiple advantages. Specifically, it excels in representing long-term creep and stress relaxation behavior in a relatively simplified manner. Accurate identification of the long-term behavior for the viscoelastic material, particularly asphalt concrete, is crucial, as it serves as a key indicator of asphalt pavement performance over its service life. However, past research studies show that the parameters of Burger's model should be back-calculated from experimental data only within a limited range of frequency, otherwise, the parameters fail to represent the true material behavior. To the best of the authors’ knowledge, there is no approach for researchers to obtain the critical frequency range in which the experiments should be performed. Therefore, this study proposes a novel framework to find the critical frequency range to obtain appropriate model parameters of Burger's model, to better characterize the viscoelastic behavior of the materials. To examine the framework, asphalt concrete mixtures are used as examples in this study. Necessary laboratory tests including complex modulus tests and stress relaxation tests, are performed on two distinctive types of asphalt concrete mixtures. The generalized Maxwell model with different number of Maxwell chains are used to evaluate the performance of Burger's model. Furthermore, since commercially available finite element packages generally do not have a direct built-in Burger's model, the article shows a way of implementing Burger's model in finite element simulation. The simulations corresponding to the laboratory tests are carried out in both frequency domain and time domain to thoroughly evaluate the performance of Burger's model. The optimal frequency range of 0.1–20 Hz for the examined mixtures is found to significantly improve the accuracy of the descriptive master curve. The results also suggest that the generalized Maxwell model requires a minimum of four Maxwell chains to maintain good performance in accurately characterizing the behavior of asphalt mixtures. However, adding more Maxwell chains beyond a critical limit may not provide significant benefits. Finite element simulations demonstrate that the stress relaxation behavior predicted by the obtained Burger's model parameters aligns more closely with experimental data over longer time intervals. This makes Burger's model a strong choice for aiding in the design of simulations for studies focused on the long-term behavior of materials.</div></div>\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":\"285 \",\"pages\":\"Article 109817\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020740324008580\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324008580","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

材料的线性粘弹性行为可通过所选择的机械模型来表示,这些模型可进一步用于不同的数值研究,如有限元模拟和离散元模拟。伯格模型是被广泛采用的力学模型之一,由于其具有多种优点,在当代研究中仍然备受青睐。具体而言,它能以相对简化的方式出色地表现长期蠕变和应力松弛行为。准确识别粘弹性材料(尤其是沥青混凝土)的长期行为至关重要,因为它是沥青路面在使用寿命内性能的关键指标。然而,过去的研究表明,Burger 模型的参数只能在有限的频率范围内根据实验数据进行反向计算,否则参数就不能代表材料的真实行为。据作者所知,目前还没有一种方法可供研究人员获取应进行实验的临界频率范围。因此,本研究提出了一个新颖的框架来寻找临界频率范围,以获得伯格模型的适当模型参数,从而更好地表征材料的粘弹性行为。为了检验该框架,本研究以沥青混凝土混合物为例。对两种不同类型的沥青混凝土混合物进行了必要的实验室测试,包括复模量测试和应力松弛测试。使用具有不同数量麦克斯韦链的广义麦克斯韦模型来评估伯格模型的性能。此外,由于市面上的有限元软件包通常没有直接内置的伯格模型,因此文章展示了在有限元模拟中实施伯格模型的方法。为了全面评估 Burger 模型的性能,我们在频域和时域中进行了与实验室测试相对应的模拟。研究发现,0.1-20 Hz 的最佳频率范围可显著提高描述性主曲线的准确性。结果还表明,广义麦克斯韦模型至少需要四个麦克斯韦链才能在准确描述沥青混合料行为方面保持良好性能。然而,在临界极限之外增加更多的麦克斯韦链可能不会带来显著的益处。有限元模拟表明,在较长的时间间隔内,所获得的 Burger 模型参数所预测的应力松弛行为与实验数据更为接近。这使得 Burger 模型成为辅助设计模拟、研究材料长期行为的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequency range optimization for linear viscoelastic characterization of Burger's model
The linear viscoelastic behavior of materials is represented using mechanical models of choice, which are further utilized in different numerical investigations, such as finite element simulations and discrete element simulations. Burger's model is one of the widely adopted mechanical models and remains highly favored in contemporary research due to its multiple advantages. Specifically, it excels in representing long-term creep and stress relaxation behavior in a relatively simplified manner. Accurate identification of the long-term behavior for the viscoelastic material, particularly asphalt concrete, is crucial, as it serves as a key indicator of asphalt pavement performance over its service life. However, past research studies show that the parameters of Burger's model should be back-calculated from experimental data only within a limited range of frequency, otherwise, the parameters fail to represent the true material behavior. To the best of the authors’ knowledge, there is no approach for researchers to obtain the critical frequency range in which the experiments should be performed. Therefore, this study proposes a novel framework to find the critical frequency range to obtain appropriate model parameters of Burger's model, to better characterize the viscoelastic behavior of the materials. To examine the framework, asphalt concrete mixtures are used as examples in this study. Necessary laboratory tests including complex modulus tests and stress relaxation tests, are performed on two distinctive types of asphalt concrete mixtures. The generalized Maxwell model with different number of Maxwell chains are used to evaluate the performance of Burger's model. Furthermore, since commercially available finite element packages generally do not have a direct built-in Burger's model, the article shows a way of implementing Burger's model in finite element simulation. The simulations corresponding to the laboratory tests are carried out in both frequency domain and time domain to thoroughly evaluate the performance of Burger's model. The optimal frequency range of 0.1–20 Hz for the examined mixtures is found to significantly improve the accuracy of the descriptive master curve. The results also suggest that the generalized Maxwell model requires a minimum of four Maxwell chains to maintain good performance in accurately characterizing the behavior of asphalt mixtures. However, adding more Maxwell chains beyond a critical limit may not provide significant benefits. Finite element simulations demonstrate that the stress relaxation behavior predicted by the obtained Burger's model parameters aligns more closely with experimental data over longer time intervals. This makes Burger's model a strong choice for aiding in the design of simulations for studies focused on the long-term behavior of materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
期刊最新文献
Modeling eroded topography in masked abrasive slurry jet pocket milling Ultrasonic-assisted ultra-precision turning of zinc-selenide with straight-nosed diamond tools Stochastic dynamics analysis for unilateral vibro-impact systems under combined excitation An explicit D-FE2 method for transient multiscale analysis A compact structure and high-speed actuator designed by imitating the movement of wave
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1