从分值函数的风险规避随机优化出发的风险测量方法

IF 1.9 2区 经济学 Q2 ECONOMICS Insurance Mathematics & Economics Pub Date : 2024-11-15 DOI:10.1016/j.insmatheco.2024.11.005
Marcelo Brutti Righi, Fernanda Maria Müller, Marlon Ruoso Moresco
{"title":"从分值函数的风险规避随机优化出发的风险测量方法","authors":"Marcelo Brutti Righi,&nbsp;Fernanda Maria Müller,&nbsp;Marlon Ruoso Moresco","doi":"10.1016/j.insmatheco.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a risk measurement approach for a risk-averse stochastic problem. We provide results that guarantee the existence of a solution to our problem. We characterize and explore the properties of the argmin as a risk measure and the minimum as a generalized deviation measure. We provide an example to demonstrate a specific application of our approach. Additionally, we present a numerical example of the problem's solution to illustrate the usefulness of our approach in risk management analysis.</div></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"120 ","pages":"Pages 42-50"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A risk measurement approach from risk-averse stochastic optimization of score functions\",\"authors\":\"Marcelo Brutti Righi,&nbsp;Fernanda Maria Müller,&nbsp;Marlon Ruoso Moresco\",\"doi\":\"10.1016/j.insmatheco.2024.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a risk measurement approach for a risk-averse stochastic problem. We provide results that guarantee the existence of a solution to our problem. We characterize and explore the properties of the argmin as a risk measure and the minimum as a generalized deviation measure. We provide an example to demonstrate a specific application of our approach. Additionally, we present a numerical example of the problem's solution to illustrate the usefulness of our approach in risk management analysis.</div></div>\",\"PeriodicalId\":54974,\"journal\":{\"name\":\"Insurance Mathematics & Economics\",\"volume\":\"120 \",\"pages\":\"Pages 42-50\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insurance Mathematics & Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167668724001100\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724001100","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种风险规避随机问题的风险测量方法。我们提供的结果保证了问题解的存在性。我们描述并探讨了作为风险度量的 argmin 和作为广义偏差度量的最小值的特性。我们举例说明了我们方法的具体应用。此外,我们还提供了一个解决问题的数字示例,以说明我们的方法在风险管理分析中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A risk measurement approach from risk-averse stochastic optimization of score functions
We propose a risk measurement approach for a risk-averse stochastic problem. We provide results that guarantee the existence of a solution to our problem. We characterize and explore the properties of the argmin as a risk measure and the minimum as a generalized deviation measure. We provide an example to demonstrate a specific application of our approach. Additionally, we present a numerical example of the problem's solution to illustrate the usefulness of our approach in risk management analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insurance Mathematics & Economics
Insurance Mathematics & Economics 管理科学-数学跨学科应用
CiteScore
3.40
自引率
15.80%
发文量
90
审稿时长
17.3 weeks
期刊介绍: Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world. Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.
期刊最新文献
A risk measurement approach from risk-averse stochastic optimization of score functions Comonotonicity and Pareto optimality, with application to collaborative insurance Automated machine learning in insurance Pension funds with longevity risk: An optimal portfolio insurance approach A new characterization of second-order stochastic dominance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1