{"title":"全面回顾用于 sEMG 信号分类的特征提取技术:从手工特征到深度学习方法","authors":"Sidi Mohamed Sid'El Moctar, Imad Rida, Sofiane Boudaoud","doi":"10.1016/j.irbm.2024.100866","DOIUrl":null,"url":null,"abstract":"<div><div>Surface Electromyography (sEMG) has become an essential tool in various fields, including prosthetic control and clinical evaluation of the neuromusculoskeletal system. In recent years, the application of machine learning and deep learning techniques to sEMG signal classification has gained significant interest. This survey provides a detailed exploration of feature extraction methods for sEMG classification, from traditional handcrafted features to learned features.</div></div><div><h3>Objectives</h3><div>This review aims to provide a comprehensive overview of feature extraction techniques for sEMG signal classification, focusing on both handcrafted and learned features. It seeks to advance research by offering a deeper understanding of fundamental concepts in sEMG signal analysis, along with comparisons and summaries of state-of-the-art approaches.</div></div><div><h3>Materials and Methods</h3><div>The survey covers various feature extraction techniques used for sEMG classification, including signal acquisition, preprocessing, and the application of conventional machine learning and deep learning classifiers. It offers taxonomies, definitions, and performance comparisons, equipping researchers with a broad understanding of current methodologies.</div></div><div><h3>Results</h3><div>Handcrafted features combined with traditional machine learning classifiers have demonstrated strong performance, especially with smaller datasets. However, deep learning techniques have shown superior results in many applications, despite challenges related to data availability and model interpretability. The survey highlights key findings regarding the performance of both approaches.</div></div><div><h3>Conclusion</h3><div>This study bridges the gap between traditional and learned feature extraction techniques for sEMG signal classification. It provides a valuable resource for researchers and practitioners, offering insights that can guide future advancements. Key areas for future research include addressing data scarcity in deep learning and improving model interpretability for clinical applications.</div></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 6","pages":"Article 100866"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Review of Feature Extraction Techniques for sEMG Signal Classification: From Handcrafted Features to Deep Learning Approaches\",\"authors\":\"Sidi Mohamed Sid'El Moctar, Imad Rida, Sofiane Boudaoud\",\"doi\":\"10.1016/j.irbm.2024.100866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surface Electromyography (sEMG) has become an essential tool in various fields, including prosthetic control and clinical evaluation of the neuromusculoskeletal system. In recent years, the application of machine learning and deep learning techniques to sEMG signal classification has gained significant interest. This survey provides a detailed exploration of feature extraction methods for sEMG classification, from traditional handcrafted features to learned features.</div></div><div><h3>Objectives</h3><div>This review aims to provide a comprehensive overview of feature extraction techniques for sEMG signal classification, focusing on both handcrafted and learned features. It seeks to advance research by offering a deeper understanding of fundamental concepts in sEMG signal analysis, along with comparisons and summaries of state-of-the-art approaches.</div></div><div><h3>Materials and Methods</h3><div>The survey covers various feature extraction techniques used for sEMG classification, including signal acquisition, preprocessing, and the application of conventional machine learning and deep learning classifiers. It offers taxonomies, definitions, and performance comparisons, equipping researchers with a broad understanding of current methodologies.</div></div><div><h3>Results</h3><div>Handcrafted features combined with traditional machine learning classifiers have demonstrated strong performance, especially with smaller datasets. However, deep learning techniques have shown superior results in many applications, despite challenges related to data availability and model interpretability. The survey highlights key findings regarding the performance of both approaches.</div></div><div><h3>Conclusion</h3><div>This study bridges the gap between traditional and learned feature extraction techniques for sEMG signal classification. It provides a valuable resource for researchers and practitioners, offering insights that can guide future advancements. Key areas for future research include addressing data scarcity in deep learning and improving model interpretability for clinical applications.</div></div>\",\"PeriodicalId\":14605,\"journal\":{\"name\":\"Irbm\",\"volume\":\"45 6\",\"pages\":\"Article 100866\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irbm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1959031824000472\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031824000472","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Comprehensive Review of Feature Extraction Techniques for sEMG Signal Classification: From Handcrafted Features to Deep Learning Approaches
Surface Electromyography (sEMG) has become an essential tool in various fields, including prosthetic control and clinical evaluation of the neuromusculoskeletal system. In recent years, the application of machine learning and deep learning techniques to sEMG signal classification has gained significant interest. This survey provides a detailed exploration of feature extraction methods for sEMG classification, from traditional handcrafted features to learned features.
Objectives
This review aims to provide a comprehensive overview of feature extraction techniques for sEMG signal classification, focusing on both handcrafted and learned features. It seeks to advance research by offering a deeper understanding of fundamental concepts in sEMG signal analysis, along with comparisons and summaries of state-of-the-art approaches.
Materials and Methods
The survey covers various feature extraction techniques used for sEMG classification, including signal acquisition, preprocessing, and the application of conventional machine learning and deep learning classifiers. It offers taxonomies, definitions, and performance comparisons, equipping researchers with a broad understanding of current methodologies.
Results
Handcrafted features combined with traditional machine learning classifiers have demonstrated strong performance, especially with smaller datasets. However, deep learning techniques have shown superior results in many applications, despite challenges related to data availability and model interpretability. The survey highlights key findings regarding the performance of both approaches.
Conclusion
This study bridges the gap between traditional and learned feature extraction techniques for sEMG signal classification. It provides a valuable resource for researchers and practitioners, offering insights that can guide future advancements. Key areas for future research include addressing data scarcity in deep learning and improving model interpretability for clinical applications.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…