Guangyin Li , Yue Wang , Yann Hautier , Xuxin Song , Yipeng Zhou , Minna Zhang , Ling Wang
{"title":"适度利用草地可抵消氮沉积和植物多样性减少对碳交换的综合负面影响","authors":"Guangyin Li , Yue Wang , Yann Hautier , Xuxin Song , Yipeng Zhou , Minna Zhang , Ling Wang","doi":"10.1016/j.catena.2024.108558","DOIUrl":null,"url":null,"abstract":"<div><div>Atmospheric nitrogen deposition has inconsistent effects on grassland carbon (C) fluxes. Whether its effects are influenced by other global change drivers such as plant diversity decline, and whether grassland management (livestock grazing/mowing) can regulate these effects remain unclear. We performed a 6-year field manipulative experiment to examine the interactive effects of nitrogen addition, plant diversity decline, and moderate grassland use by livestock grazing and mowing on ecosystem C fluxes. Throughout three consecutive years (2018–2020), we measured net ecosystem CO<sub>2</sub> exchange (NEE) as the balance of gross ecosystem production (GEP) and ecosystem respiration (ER), on a monthly basis during the growing season (from May to September). We found that declines in plant diversity led to a reduction in NEE, whereas moderate grassland use resulted in an increase. The impact of nitrogen addition on NEE was contingent on specific context of grassland plant diversity and grazing/mowing utilization. Specifically, nitrogen addition had no effect on NEE in communities with high plant diversity while reduced NEE in communities with low diversity. However, in low plant diversity communities with grazing/mowing utilization, nitrogen addition increased NEE. Structural equation models further revealed that the combined effects of global changes (nitrogen addition and diversity decline) and grassland use (livestock grazing and mowing) on carbon exchange was regulated primarily by aboveground biomass. Our results indicate that moderate grassland use can reverse the negative effects of nitrogen addition on NEE in the low-diversity community. Our results highlight the potential of moderate grassland use as an effective management strategy for the enhancement of grassland C sequestration under ongoing global changes such as nitrogen deposition and biodiversity loss.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"247 ","pages":"Article 108558"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moderate grassland use counteracts the combined negative impact of nitrogen deposition and plant diversity decline on carbon exchange\",\"authors\":\"Guangyin Li , Yue Wang , Yann Hautier , Xuxin Song , Yipeng Zhou , Minna Zhang , Ling Wang\",\"doi\":\"10.1016/j.catena.2024.108558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Atmospheric nitrogen deposition has inconsistent effects on grassland carbon (C) fluxes. Whether its effects are influenced by other global change drivers such as plant diversity decline, and whether grassland management (livestock grazing/mowing) can regulate these effects remain unclear. We performed a 6-year field manipulative experiment to examine the interactive effects of nitrogen addition, plant diversity decline, and moderate grassland use by livestock grazing and mowing on ecosystem C fluxes. Throughout three consecutive years (2018–2020), we measured net ecosystem CO<sub>2</sub> exchange (NEE) as the balance of gross ecosystem production (GEP) and ecosystem respiration (ER), on a monthly basis during the growing season (from May to September). We found that declines in plant diversity led to a reduction in NEE, whereas moderate grassland use resulted in an increase. The impact of nitrogen addition on NEE was contingent on specific context of grassland plant diversity and grazing/mowing utilization. Specifically, nitrogen addition had no effect on NEE in communities with high plant diversity while reduced NEE in communities with low diversity. However, in low plant diversity communities with grazing/mowing utilization, nitrogen addition increased NEE. Structural equation models further revealed that the combined effects of global changes (nitrogen addition and diversity decline) and grassland use (livestock grazing and mowing) on carbon exchange was regulated primarily by aboveground biomass. Our results indicate that moderate grassland use can reverse the negative effects of nitrogen addition on NEE in the low-diversity community. Our results highlight the potential of moderate grassland use as an effective management strategy for the enhancement of grassland C sequestration under ongoing global changes such as nitrogen deposition and biodiversity loss.</div></div>\",\"PeriodicalId\":9801,\"journal\":{\"name\":\"Catena\",\"volume\":\"247 \",\"pages\":\"Article 108558\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catena\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0341816224007550\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816224007550","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Moderate grassland use counteracts the combined negative impact of nitrogen deposition and plant diversity decline on carbon exchange
Atmospheric nitrogen deposition has inconsistent effects on grassland carbon (C) fluxes. Whether its effects are influenced by other global change drivers such as plant diversity decline, and whether grassland management (livestock grazing/mowing) can regulate these effects remain unclear. We performed a 6-year field manipulative experiment to examine the interactive effects of nitrogen addition, plant diversity decline, and moderate grassland use by livestock grazing and mowing on ecosystem C fluxes. Throughout three consecutive years (2018–2020), we measured net ecosystem CO2 exchange (NEE) as the balance of gross ecosystem production (GEP) and ecosystem respiration (ER), on a monthly basis during the growing season (from May to September). We found that declines in plant diversity led to a reduction in NEE, whereas moderate grassland use resulted in an increase. The impact of nitrogen addition on NEE was contingent on specific context of grassland plant diversity and grazing/mowing utilization. Specifically, nitrogen addition had no effect on NEE in communities with high plant diversity while reduced NEE in communities with low diversity. However, in low plant diversity communities with grazing/mowing utilization, nitrogen addition increased NEE. Structural equation models further revealed that the combined effects of global changes (nitrogen addition and diversity decline) and grassland use (livestock grazing and mowing) on carbon exchange was regulated primarily by aboveground biomass. Our results indicate that moderate grassland use can reverse the negative effects of nitrogen addition on NEE in the low-diversity community. Our results highlight the potential of moderate grassland use as an effective management strategy for the enhancement of grassland C sequestration under ongoing global changes such as nitrogen deposition and biodiversity loss.
期刊介绍:
Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment.
Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.