{"title":"基于智能算法优化的用于微弱信号检测的非线性耦合非对称随机共振","authors":"Shaojuan Ma , Yuan Liu , Xiaoyan Ma , Yantong Liu","doi":"10.1016/j.probengmech.2024.103697","DOIUrl":null,"url":null,"abstract":"<div><div>Stochastic resonance has been extensively studied for detecting weak signals. To improve the diagnostic ability of weak signals, a novel nonlinear coupled asymmetric stochastic resonance (NCASR) system is investigated in this paper. Firstly, the NCASR system is established by coupling the asymmetric bistable system with the monostable system. Next, the expressions for the steady-state probability density (SPD) function, the mean first passage time (MFPT) and the signal-to-noise ratio (SNR) of the proposed system are derived based on the adiabatic approximation theory. Furthermore, the impact of system parameters on the SPD, the MFPT and the SNR is analyzed. Then, by simulation experiments, we verify the effectiveness of detecting weak signals for the NCASR system with Lévy noise. Finally, the NCASR system optimized by Adaptive Weighted Particle Swarm Optimization (AWPSO) algorithm is applied to detect the bearing fault signal. Compared with the optimized classical bistable stochastic resonance (CBSR) system, it is found that the detection performance of the NCASR system is superior to the CBSR system in detecting bearing fault signals.</div></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"78 ","pages":"Article 103697"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear coupled asymmetric stochastic resonance for weak signal detection based on intelligent algorithm optimization\",\"authors\":\"Shaojuan Ma , Yuan Liu , Xiaoyan Ma , Yantong Liu\",\"doi\":\"10.1016/j.probengmech.2024.103697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stochastic resonance has been extensively studied for detecting weak signals. To improve the diagnostic ability of weak signals, a novel nonlinear coupled asymmetric stochastic resonance (NCASR) system is investigated in this paper. Firstly, the NCASR system is established by coupling the asymmetric bistable system with the monostable system. Next, the expressions for the steady-state probability density (SPD) function, the mean first passage time (MFPT) and the signal-to-noise ratio (SNR) of the proposed system are derived based on the adiabatic approximation theory. Furthermore, the impact of system parameters on the SPD, the MFPT and the SNR is analyzed. Then, by simulation experiments, we verify the effectiveness of detecting weak signals for the NCASR system with Lévy noise. Finally, the NCASR system optimized by Adaptive Weighted Particle Swarm Optimization (AWPSO) algorithm is applied to detect the bearing fault signal. Compared with the optimized classical bistable stochastic resonance (CBSR) system, it is found that the detection performance of the NCASR system is superior to the CBSR system in detecting bearing fault signals.</div></div>\",\"PeriodicalId\":54583,\"journal\":{\"name\":\"Probabilistic Engineering Mechanics\",\"volume\":\"78 \",\"pages\":\"Article 103697\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probabilistic Engineering Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026689202400119X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026689202400119X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Nonlinear coupled asymmetric stochastic resonance for weak signal detection based on intelligent algorithm optimization
Stochastic resonance has been extensively studied for detecting weak signals. To improve the diagnostic ability of weak signals, a novel nonlinear coupled asymmetric stochastic resonance (NCASR) system is investigated in this paper. Firstly, the NCASR system is established by coupling the asymmetric bistable system with the monostable system. Next, the expressions for the steady-state probability density (SPD) function, the mean first passage time (MFPT) and the signal-to-noise ratio (SNR) of the proposed system are derived based on the adiabatic approximation theory. Furthermore, the impact of system parameters on the SPD, the MFPT and the SNR is analyzed. Then, by simulation experiments, we verify the effectiveness of detecting weak signals for the NCASR system with Lévy noise. Finally, the NCASR system optimized by Adaptive Weighted Particle Swarm Optimization (AWPSO) algorithm is applied to detect the bearing fault signal. Compared with the optimized classical bistable stochastic resonance (CBSR) system, it is found that the detection performance of the NCASR system is superior to the CBSR system in detecting bearing fault signals.
期刊介绍:
This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.