Eduard Hogea , Darian M. Onchiş , Ruqiang Yan , Zheng Zhou
{"title":"LogicLSTM:用于齿轮箱故障诊断的逻辑驱动长短期记忆模型","authors":"Eduard Hogea , Darian M. Onchiş , Ruqiang Yan , Zheng Zhou","doi":"10.1016/j.jmsy.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces LogicLSTM, a hybrid neuro-symbolic model obtained by logically guiding a pretrained Long Short-Term Memory (LSTM) network with the support of a customized Logic Tensor Network (LTN). The model is further optimized by explainable AI techniques, for a refined fault classification of time-series data coming from industrial gearboxes. The framework leverages the intrinsic strengths of LSTMs deep recurrent networks for temporal data processing with logical reasoning capabilities, to improve prediction accuracy and interpretability of the classification. Our approach addresses the challenges of extracting relevant data features and integrating connectionist and symbolic methodologies to form a cohesive predictive model. Results from extensive testing show that our model significantly outperforms traditional LSTM models, particularly in complex fault scenarios where conventional methods may fail. Specifically, the hybrid model demonstrates a 16.03% average improvement in accuracy over standard LSTM models under conditions of sufficient data availability, and a 8.56% improvement in scenarios where data is scarce. This research not only demonstrates the potential of hybrid models in industrial applications but also highlights the importance of explainability in AI systems for critical decision-making processes. The proposed model’s ability to interpret and explain its predictions makes it a valuable tool for advancing predictive maintenance strategies within the Industry 4.0 framework.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"77 ","pages":"Pages 892-902"},"PeriodicalIF":12.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LogicLSTM: Logically-driven long short-term memory model for fault diagnosis in gearboxes\",\"authors\":\"Eduard Hogea , Darian M. Onchiş , Ruqiang Yan , Zheng Zhou\",\"doi\":\"10.1016/j.jmsy.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article introduces LogicLSTM, a hybrid neuro-symbolic model obtained by logically guiding a pretrained Long Short-Term Memory (LSTM) network with the support of a customized Logic Tensor Network (LTN). The model is further optimized by explainable AI techniques, for a refined fault classification of time-series data coming from industrial gearboxes. The framework leverages the intrinsic strengths of LSTMs deep recurrent networks for temporal data processing with logical reasoning capabilities, to improve prediction accuracy and interpretability of the classification. Our approach addresses the challenges of extracting relevant data features and integrating connectionist and symbolic methodologies to form a cohesive predictive model. Results from extensive testing show that our model significantly outperforms traditional LSTM models, particularly in complex fault scenarios where conventional methods may fail. Specifically, the hybrid model demonstrates a 16.03% average improvement in accuracy over standard LSTM models under conditions of sufficient data availability, and a 8.56% improvement in scenarios where data is scarce. This research not only demonstrates the potential of hybrid models in industrial applications but also highlights the importance of explainability in AI systems for critical decision-making processes. The proposed model’s ability to interpret and explain its predictions makes it a valuable tool for advancing predictive maintenance strategies within the Industry 4.0 framework.</div></div>\",\"PeriodicalId\":16227,\"journal\":{\"name\":\"Journal of Manufacturing Systems\",\"volume\":\"77 \",\"pages\":\"Pages 892-902\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278612524002280\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524002280","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
LogicLSTM: Logically-driven long short-term memory model for fault diagnosis in gearboxes
This article introduces LogicLSTM, a hybrid neuro-symbolic model obtained by logically guiding a pretrained Long Short-Term Memory (LSTM) network with the support of a customized Logic Tensor Network (LTN). The model is further optimized by explainable AI techniques, for a refined fault classification of time-series data coming from industrial gearboxes. The framework leverages the intrinsic strengths of LSTMs deep recurrent networks for temporal data processing with logical reasoning capabilities, to improve prediction accuracy and interpretability of the classification. Our approach addresses the challenges of extracting relevant data features and integrating connectionist and symbolic methodologies to form a cohesive predictive model. Results from extensive testing show that our model significantly outperforms traditional LSTM models, particularly in complex fault scenarios where conventional methods may fail. Specifically, the hybrid model demonstrates a 16.03% average improvement in accuracy over standard LSTM models under conditions of sufficient data availability, and a 8.56% improvement in scenarios where data is scarce. This research not only demonstrates the potential of hybrid models in industrial applications but also highlights the importance of explainability in AI systems for critical decision-making processes. The proposed model’s ability to interpret and explain its predictions makes it a valuable tool for advancing predictive maintenance strategies within the Industry 4.0 framework.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.