具有初始曲率和扭转角的带肋 H 型截面铝合金构件的机械性能分析方法

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL Thin-Walled Structures Pub Date : 2024-11-01 DOI:10.1016/j.tws.2024.112662
Guojun Sun , Bo Li , Jinzhi Wu
{"title":"具有初始曲率和扭转角的带肋 H 型截面铝合金构件的机械性能分析方法","authors":"Guojun Sun ,&nbsp;Bo Li ,&nbsp;Jinzhi Wu","doi":"10.1016/j.tws.2024.112662","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, an experimental investigation was conducted on the axial compression performance of ribbed H-section aluminum alloy members with initial curvature and torsion angle under varying boundary conditions, including one end hinged with the other rigidly connected, and both ends rigidly connected. Ultimate bearing capacity and failure modes were identified under real loads and subsequently compared with previous findings from our research group on members with hinged ends. To account for initial imperfections introduced during processing and transportation, 3D scanning technology was utilized to capture the precise geometrical dimensions, constructing an accurate numerical simulation model. The experimental results were corroborated with numerical simulations, leading to the proposal of an analytical method for members with initial curvature and torsion angle. Furthermore, extensive parametric analysis elucidated the impact of initial curvature, torsion angle, and slenderness ratio on the ultimate bearing capacity, culminating in the formulation of the stability factor and calculated length factor based on numerical outcomes. The study discovered significant variances in bearing capacity under different boundary conditions, with one-end hinged and one-section rigidly connected, and two-end rigidly connected conditions exhibiting 1.4 and 2.1 times the capacity of the hinged-at-both-ends scenario. Under different boundary conditions, the axial compression members were subjected to flexural-torsional buckling failure. Moreover, when the ultimate bearing capacity was reached, the lower flange of the member and the web near the lower flange appeared obvious buckling phenomenon. The numerical analysis aligned well with experimental data, validating the simulation method's reliability and revealing the stress distribution and evolution during member failure. These findings offer vital theoretical insights and technical support for engineering design and practical applications.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112662"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical performance analysis method for ribbed H-section aluminum alloy members with initial curvature and torsion angle\",\"authors\":\"Guojun Sun ,&nbsp;Bo Li ,&nbsp;Jinzhi Wu\",\"doi\":\"10.1016/j.tws.2024.112662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, an experimental investigation was conducted on the axial compression performance of ribbed H-section aluminum alloy members with initial curvature and torsion angle under varying boundary conditions, including one end hinged with the other rigidly connected, and both ends rigidly connected. Ultimate bearing capacity and failure modes were identified under real loads and subsequently compared with previous findings from our research group on members with hinged ends. To account for initial imperfections introduced during processing and transportation, 3D scanning technology was utilized to capture the precise geometrical dimensions, constructing an accurate numerical simulation model. The experimental results were corroborated with numerical simulations, leading to the proposal of an analytical method for members with initial curvature and torsion angle. Furthermore, extensive parametric analysis elucidated the impact of initial curvature, torsion angle, and slenderness ratio on the ultimate bearing capacity, culminating in the formulation of the stability factor and calculated length factor based on numerical outcomes. The study discovered significant variances in bearing capacity under different boundary conditions, with one-end hinged and one-section rigidly connected, and two-end rigidly connected conditions exhibiting 1.4 and 2.1 times the capacity of the hinged-at-both-ends scenario. Under different boundary conditions, the axial compression members were subjected to flexural-torsional buckling failure. Moreover, when the ultimate bearing capacity was reached, the lower flange of the member and the web near the lower flange appeared obvious buckling phenomenon. The numerical analysis aligned well with experimental data, validating the simulation method's reliability and revealing the stress distribution and evolution during member failure. These findings offer vital theoretical insights and technical support for engineering design and practical applications.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"206 \",\"pages\":\"Article 112662\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263823124011029\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124011029","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究对具有初始曲率和扭转角的带肋 H 型铝合金构件在不同边界条件下的轴向压缩性能进行了实验研究,这些边界条件包括一端铰接、另一端刚性连接以及两端刚性连接。研究确定了实际载荷下的极限承载能力和失效模式,并将其与我们研究小组之前对铰接端构件的研究结果进行了比较。为了考虑到加工和运输过程中产生的初始缺陷,利用三维扫描技术捕捉了精确的几何尺寸,构建了精确的数值模拟模型。实验结果与数值模拟结果相互印证,从而为具有初始曲率和扭转角的构件提出了一种分析方法。此外,广泛的参数分析阐明了初始曲率、扭转角和细长比对极限承载力的影响,最终根据数值结果制定了稳定系数和计算长度系数。研究发现,在不同的边界条件下,承载能力存在显著差异,单端铰接和单节刚性连接以及双端刚性连接条件下的承载能力分别是两端铰接情况下的 1.4 倍和 2.1 倍。在不同的边界条件下,轴向受压构件发生了挠曲扭转屈曲破坏。此外,当达到极限承载力时,构件的下翼缘和靠近下翼缘的腹板出现了明显的屈曲现象。数值分析与实验数据吻合良好,验证了模拟方法的可靠性,并揭示了构件失效时的应力分布和演变过程。这些发现为工程设计和实际应用提供了重要的理论启示和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical performance analysis method for ribbed H-section aluminum alloy members with initial curvature and torsion angle
In this study, an experimental investigation was conducted on the axial compression performance of ribbed H-section aluminum alloy members with initial curvature and torsion angle under varying boundary conditions, including one end hinged with the other rigidly connected, and both ends rigidly connected. Ultimate bearing capacity and failure modes were identified under real loads and subsequently compared with previous findings from our research group on members with hinged ends. To account for initial imperfections introduced during processing and transportation, 3D scanning technology was utilized to capture the precise geometrical dimensions, constructing an accurate numerical simulation model. The experimental results were corroborated with numerical simulations, leading to the proposal of an analytical method for members with initial curvature and torsion angle. Furthermore, extensive parametric analysis elucidated the impact of initial curvature, torsion angle, and slenderness ratio on the ultimate bearing capacity, culminating in the formulation of the stability factor and calculated length factor based on numerical outcomes. The study discovered significant variances in bearing capacity under different boundary conditions, with one-end hinged and one-section rigidly connected, and two-end rigidly connected conditions exhibiting 1.4 and 2.1 times the capacity of the hinged-at-both-ends scenario. Under different boundary conditions, the axial compression members were subjected to flexural-torsional buckling failure. Moreover, when the ultimate bearing capacity was reached, the lower flange of the member and the web near the lower flange appeared obvious buckling phenomenon. The numerical analysis aligned well with experimental data, validating the simulation method's reliability and revealing the stress distribution and evolution during member failure. These findings offer vital theoretical insights and technical support for engineering design and practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
期刊最新文献
Editorial Board Comparative study on collapse behavior of modular steel buildings: Experiment and analysis Local-global buckling interaction in steel I-beams—A European design proposal for the case of fire Impact resistance performance of 3D woven TZ800H plates with different textile architecture Integrated optimization of ply number, layer thickness, and fiber angle for variable-stiffness composites using dynamic multi-fidelity surrogate model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1