{"title":"基于绝对节点坐标公式的弱形式正交壳元素","authors":"Zixuan He, Huayi Li, Hongzhi Zhong","doi":"10.1016/j.tws.2024.112670","DOIUrl":null,"url":null,"abstract":"<div><div>Weak form quadrature elements for moderately thick shells with arbitrary initial configurations are developed under the framework of continuum mechanics and the absolute nodal coordinate formulation (ANCF). Locking problems of shell analysis are discussed. Nonlinear analysis of various shell structures is conducted. The joint constraint equations for shells with discontinuous slopes are established. Five examples encompassing static and dynamic shell analysis, post-buckling analysis of shells, as well as analysis of shells with discontinuous mid-surface slopes are examined to assess the performance of the proposed elements. Satisfactory results are obtained, validating the efficacy of the proposed elements.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112670"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak form quadrature shell elements based on absolute nodal coordinate formulation\",\"authors\":\"Zixuan He, Huayi Li, Hongzhi Zhong\",\"doi\":\"10.1016/j.tws.2024.112670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Weak form quadrature elements for moderately thick shells with arbitrary initial configurations are developed under the framework of continuum mechanics and the absolute nodal coordinate formulation (ANCF). Locking problems of shell analysis are discussed. Nonlinear analysis of various shell structures is conducted. The joint constraint equations for shells with discontinuous slopes are established. Five examples encompassing static and dynamic shell analysis, post-buckling analysis of shells, as well as analysis of shells with discontinuous mid-surface slopes are examined to assess the performance of the proposed elements. Satisfactory results are obtained, validating the efficacy of the proposed elements.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"206 \",\"pages\":\"Article 112670\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263823124011108\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124011108","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Weak form quadrature shell elements based on absolute nodal coordinate formulation
Weak form quadrature elements for moderately thick shells with arbitrary initial configurations are developed under the framework of continuum mechanics and the absolute nodal coordinate formulation (ANCF). Locking problems of shell analysis are discussed. Nonlinear analysis of various shell structures is conducted. The joint constraint equations for shells with discontinuous slopes are established. Five examples encompassing static and dynamic shell analysis, post-buckling analysis of shells, as well as analysis of shells with discontinuous mid-surface slopes are examined to assess the performance of the proposed elements. Satisfactory results are obtained, validating the efficacy of the proposed elements.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.