葡萄渣中酚类化合物多级平衡萃取的建模、模拟和优化

IF 5.3 2区 农林科学 Q1 ENGINEERING, CHEMICAL Journal of Food Engineering Pub Date : 2024-11-13 DOI:10.1016/j.jfoodeng.2024.112392
Rodolfo de Mattos, Berta Zecchi
{"title":"葡萄渣中酚类化合物多级平衡萃取的建模、模拟和优化","authors":"Rodolfo de Mattos,&nbsp;Berta Zecchi","doi":"10.1016/j.jfoodeng.2024.112392","DOIUrl":null,"url":null,"abstract":"<div><div>The seasonal nature of wine production results in the accumulation of significant quantities of grape pomace (GP) during harvest, presenting management challenges for wineries that traditionally regard this solid byproduct as low-value waste. However, extracting phenolic compounds (PCs) from GP offers a promising avenue for creating bioactive extracts for use in the food, pharmaceutical, and cosmetic industries. This study develops a mathematical model for predicting the total phenolic content (TPC) and total dissolved solids (TDS) in liquids obtained from multi-equilibrium-stage extraction processes using a 50% aqueous ethanol solution to recover PCs from Tannat GP. The model is applicable across a wide range of TPC and TDS concentrations in the liquid (0.2–45.4 gGAE/L for TPC and 1–118 g/L for TDS) and extraction temperatures between 30 and 70 °C. It is used to determine the optimal operational conditions of a Shanks extraction system, either to minimize fresh solvent consumption or to maximize selectivity for PCs extraction, achieving a desired extraction yield with a specified number of extraction vessels.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"389 ","pages":"Article 112392"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling, simulation, and optimization of multi-stage equilibrium extraction of phenolic compounds from grape pomace\",\"authors\":\"Rodolfo de Mattos,&nbsp;Berta Zecchi\",\"doi\":\"10.1016/j.jfoodeng.2024.112392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The seasonal nature of wine production results in the accumulation of significant quantities of grape pomace (GP) during harvest, presenting management challenges for wineries that traditionally regard this solid byproduct as low-value waste. However, extracting phenolic compounds (PCs) from GP offers a promising avenue for creating bioactive extracts for use in the food, pharmaceutical, and cosmetic industries. This study develops a mathematical model for predicting the total phenolic content (TPC) and total dissolved solids (TDS) in liquids obtained from multi-equilibrium-stage extraction processes using a 50% aqueous ethanol solution to recover PCs from Tannat GP. The model is applicable across a wide range of TPC and TDS concentrations in the liquid (0.2–45.4 gGAE/L for TPC and 1–118 g/L for TDS) and extraction temperatures between 30 and 70 °C. It is used to determine the optimal operational conditions of a Shanks extraction system, either to minimize fresh solvent consumption or to maximize selectivity for PCs extraction, achieving a desired extraction yield with a specified number of extraction vessels.</div></div>\",\"PeriodicalId\":359,\"journal\":{\"name\":\"Journal of Food Engineering\",\"volume\":\"389 \",\"pages\":\"Article 112392\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0260877424004588\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424004588","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

葡萄酒生产的季节性特点导致葡萄采摘期间积累了大量的葡萄渣(GP),这给传统上将这种固体副产品视为低价值废物的酿酒厂带来了管理上的挑战。然而,从葡萄渣中提取酚类化合物(PCs)为制造用于食品、制药和化妆品行业的生物活性提取物提供了一个前景广阔的途径。本研究建立了一个数学模型,用于预测使用 50% 的乙醇水溶液从丹纳特 GP 中回收多酚化合物的多平衡级萃取工艺所获得的液体中的总酚含量(TPC)和总溶解固体(TDS)。该模型适用于液体中广泛的 TPC 和 TDS 浓度范围(TPC 为 0.2-45.4 gGAE/L,TDS 为 1-118 g/L)以及 30 至 70 °C 之间的萃取温度。它可用于确定香克斯萃取系统的最佳操作条件,以最大限度地减少新鲜溶剂的消耗或最大限度地提高多氯联苯萃取的选择性,从而在指定数量的萃取容器中获得理想的萃取率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling, simulation, and optimization of multi-stage equilibrium extraction of phenolic compounds from grape pomace
The seasonal nature of wine production results in the accumulation of significant quantities of grape pomace (GP) during harvest, presenting management challenges for wineries that traditionally regard this solid byproduct as low-value waste. However, extracting phenolic compounds (PCs) from GP offers a promising avenue for creating bioactive extracts for use in the food, pharmaceutical, and cosmetic industries. This study develops a mathematical model for predicting the total phenolic content (TPC) and total dissolved solids (TDS) in liquids obtained from multi-equilibrium-stage extraction processes using a 50% aqueous ethanol solution to recover PCs from Tannat GP. The model is applicable across a wide range of TPC and TDS concentrations in the liquid (0.2–45.4 gGAE/L for TPC and 1–118 g/L for TDS) and extraction temperatures between 30 and 70 °C. It is used to determine the optimal operational conditions of a Shanks extraction system, either to minimize fresh solvent consumption or to maximize selectivity for PCs extraction, achieving a desired extraction yield with a specified number of extraction vessels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Engineering
Journal of Food Engineering 工程技术-工程:化工
CiteScore
11.80
自引率
5.50%
发文量
275
审稿时长
24 days
期刊介绍: The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including: Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes. Accounts of food engineering achievements are of particular value.
期刊最新文献
Modeling, simulation, and optimization of multi-stage equilibrium extraction of phenolic compounds from grape pomace Microencapsulation of anthocyanin-rich extract of grumixama fruits (Eugenia brasiliensis) using non-conventional wall materials and in vitro gastrointestinal digestion Editorial Board Drop breakup can occur inside the gap of a high-pressure homogenizer – New evidence from experimental breakup visualizations Enzymatic bimetallic Cu-Ni micromotor sensor for xanthine detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1