中国西北部金川硫化镍铜矿床西端多期岩浆喷发及基于勘探数据的矿产勘探战略

IF 3.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geochemical Exploration Pub Date : 2024-10-30 DOI:10.1016/j.gexplo.2024.107615
Long-Jiao Li , Xian-Cheng Mao , Zhan-Kun Liu , Xin-Ming Duan , Yun-Qi Wang , Qi-Xing Ai , De-Xian Li
{"title":"中国西北部金川硫化镍铜矿床西端多期岩浆喷发及基于勘探数据的矿产勘探战略","authors":"Long-Jiao Li ,&nbsp;Xian-Cheng Mao ,&nbsp;Zhan-Kun Liu ,&nbsp;Xin-Ming Duan ,&nbsp;Yun-Qi Wang ,&nbsp;Qi-Xing Ai ,&nbsp;De-Xian Li","doi":"10.1016/j.gexplo.2024.107615","DOIUrl":null,"url":null,"abstract":"<div><div>The western intrusion of the world-class Jinchuan Ni<img>Cu sulfide deposit consists of fine-grained and coarse-grained binary lithofacies units. However, recent exploration has revealed two layers of net-textured sulfides in the fine-grained unit at the western end of the Jinchuan intrusion, adding complexity to the genesis of sulfide mineralization. We measured chalcophile elements and collected exploration data on Cu and Ni content to investigate their genesis and prospecting potential. The lower fine-grained subunits, comprising a layer of disseminated sulfides (DS-1) in the bottom and overlain by massive sulfide (MS) and olivine-sulfide cumulates (NTS-1), were overlain by the upper fine-grained subunits disseminated sulfides (DS-2) with a core of net-textured sulfides (NTS-2). The coarse-grained lherzolite with disseminated sulfides (DS-3) sharply cut through the upper subunit. All disseminated samples have Cu/Pd ratios (11,414–128,626) that exceed the mantle range. Additionally, the Pd/Ru ratios of DS-1 (1.26–13.2) are the lowest, followed by DS-2 (3.69–13.5), and highest in DS-3 (2.80–33.6). The exploration data indicate that the Ni and Cu contents and Cu/(Cu + Ni) ratios are significantly higher in DS-3 than in DS-2, while DS-1 shows more dispersed. The NTS-1 exhibits significant Ir and Ru depletion, with Cu/(Cu + Ni) decreasing with depth, eventually encountering Ir and Ru-riched MS. In addition, NTS-2 shows partially Ir depletion but Ru non-depletion, and Cu/(Cu + Ni) increases with depth. These signatures suggest that the lower and upper subunits, along with the coarse-grained unit, formed from platinum-group elements (PGE) in increasingly depleted magma, likely resulting from prior sulfide segregation before emplacement. Furthermore, the differences in Ir and Ru depletion and the variation in the Cu/(Cu + Ni) trend with depth between NTS-1 and NTS-2 were explained by the migration direction of fractional sulfide liquid during sulfide fractionation. We propose that the western end of the Jinchuan intrusion was formed by multi-stage magma emplacement. The strong correlation between exploration data (Ni, Cu, and Cu/(Cu + Ni)) and various sulfide mineralization layers suggests that delineating the spatial range of each sulfide mineralization could provide valuable information for deep mineral prospectivity mapping.</div></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"268 ","pages":"Article 107615"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-stage magma emplacement in the western end of the Jinchuan NiCu sulfide deposit, NW China, and mineral exploration strategy based on exploration data\",\"authors\":\"Long-Jiao Li ,&nbsp;Xian-Cheng Mao ,&nbsp;Zhan-Kun Liu ,&nbsp;Xin-Ming Duan ,&nbsp;Yun-Qi Wang ,&nbsp;Qi-Xing Ai ,&nbsp;De-Xian Li\",\"doi\":\"10.1016/j.gexplo.2024.107615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The western intrusion of the world-class Jinchuan Ni<img>Cu sulfide deposit consists of fine-grained and coarse-grained binary lithofacies units. However, recent exploration has revealed two layers of net-textured sulfides in the fine-grained unit at the western end of the Jinchuan intrusion, adding complexity to the genesis of sulfide mineralization. We measured chalcophile elements and collected exploration data on Cu and Ni content to investigate their genesis and prospecting potential. The lower fine-grained subunits, comprising a layer of disseminated sulfides (DS-1) in the bottom and overlain by massive sulfide (MS) and olivine-sulfide cumulates (NTS-1), were overlain by the upper fine-grained subunits disseminated sulfides (DS-2) with a core of net-textured sulfides (NTS-2). The coarse-grained lherzolite with disseminated sulfides (DS-3) sharply cut through the upper subunit. All disseminated samples have Cu/Pd ratios (11,414–128,626) that exceed the mantle range. Additionally, the Pd/Ru ratios of DS-1 (1.26–13.2) are the lowest, followed by DS-2 (3.69–13.5), and highest in DS-3 (2.80–33.6). The exploration data indicate that the Ni and Cu contents and Cu/(Cu + Ni) ratios are significantly higher in DS-3 than in DS-2, while DS-1 shows more dispersed. The NTS-1 exhibits significant Ir and Ru depletion, with Cu/(Cu + Ni) decreasing with depth, eventually encountering Ir and Ru-riched MS. In addition, NTS-2 shows partially Ir depletion but Ru non-depletion, and Cu/(Cu + Ni) increases with depth. These signatures suggest that the lower and upper subunits, along with the coarse-grained unit, formed from platinum-group elements (PGE) in increasingly depleted magma, likely resulting from prior sulfide segregation before emplacement. Furthermore, the differences in Ir and Ru depletion and the variation in the Cu/(Cu + Ni) trend with depth between NTS-1 and NTS-2 were explained by the migration direction of fractional sulfide liquid during sulfide fractionation. We propose that the western end of the Jinchuan intrusion was formed by multi-stage magma emplacement. The strong correlation between exploration data (Ni, Cu, and Cu/(Cu + Ni)) and various sulfide mineralization layers suggests that delineating the spatial range of each sulfide mineralization could provide valuable information for deep mineral prospectivity mapping.</div></div>\",\"PeriodicalId\":16336,\"journal\":{\"name\":\"Journal of Geochemical Exploration\",\"volume\":\"268 \",\"pages\":\"Article 107615\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geochemical Exploration\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375674224002310\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674224002310","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

世界级金川硫化镍铜矿床的西部侵入体由细粒和粗粒二元岩性单元组成。然而,最近的勘探在金川侵入体西端的细粒单元中发现了两层净纹理硫化物,增加了硫化物成矿的复杂性。我们测量了亲铝元素并收集了铜和镍含量的勘探数据,以研究其成因和找矿潜力。下部细粒亚单元由底部的浸染状硫化物层(DS-1)和块状硫化物(MS)及橄榄石硫化物积层(NTS-1)组成,上部细粒亚单元为浸染状硫化物层(DS-2),核心为净纹理硫化物(NTS-2)。粗粒蛭石与浸染状硫化物(DS-3)尖锐地切割了上亚单元。所有浸染状样品的铜/钯比率(11,414-128,626)都超过了地幔范围。此外,DS-1(1.26-13.2)的钯/钌比值最低,DS-2(3.69-13.5)次之,DS-3(2.80-33.6)最高。勘探数据表明,DS-3 中的 Ni 和 Cu 含量以及 Cu/(Cu + Ni)比值明显高于 DS-2,而 DS-1 则更为分散。NTS-1表现出明显的Ir和Ru贫化,Cu/(Cu + Ni)随深度降低,最终遇到Ir和Ru富集的MS。此外,NTS-2 显示部分 Ir 贫化,但 Ru 未贫化,Cu/(Cu + Ni)随深度增加。这些特征表明,下亚单元和上亚单元以及粗粒度单元是在日益贫化的岩浆中由铂族元素(PGE)形成的,很可能是在成岩之前硫化物偏析造成的。此外,NTS-1和NTS-2之间Ir和Ru贫化程度的差异以及Cu/(Cu + Ni)随深度变化的趋势,可以用硫化物分馏过程中分馏硫化物液体的迁移方向来解释。我们认为金川侵入体西端是由多级岩浆喷发形成的。勘探数据(镍、铜和铜/(铜+镍))与各硫化物矿化层之间的强相关性表明,划分各硫化物矿化层的空间范围可为深部找矿制图提供有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-stage magma emplacement in the western end of the Jinchuan NiCu sulfide deposit, NW China, and mineral exploration strategy based on exploration data
The western intrusion of the world-class Jinchuan NiCu sulfide deposit consists of fine-grained and coarse-grained binary lithofacies units. However, recent exploration has revealed two layers of net-textured sulfides in the fine-grained unit at the western end of the Jinchuan intrusion, adding complexity to the genesis of sulfide mineralization. We measured chalcophile elements and collected exploration data on Cu and Ni content to investigate their genesis and prospecting potential. The lower fine-grained subunits, comprising a layer of disseminated sulfides (DS-1) in the bottom and overlain by massive sulfide (MS) and olivine-sulfide cumulates (NTS-1), were overlain by the upper fine-grained subunits disseminated sulfides (DS-2) with a core of net-textured sulfides (NTS-2). The coarse-grained lherzolite with disseminated sulfides (DS-3) sharply cut through the upper subunit. All disseminated samples have Cu/Pd ratios (11,414–128,626) that exceed the mantle range. Additionally, the Pd/Ru ratios of DS-1 (1.26–13.2) are the lowest, followed by DS-2 (3.69–13.5), and highest in DS-3 (2.80–33.6). The exploration data indicate that the Ni and Cu contents and Cu/(Cu + Ni) ratios are significantly higher in DS-3 than in DS-2, while DS-1 shows more dispersed. The NTS-1 exhibits significant Ir and Ru depletion, with Cu/(Cu + Ni) decreasing with depth, eventually encountering Ir and Ru-riched MS. In addition, NTS-2 shows partially Ir depletion but Ru non-depletion, and Cu/(Cu + Ni) increases with depth. These signatures suggest that the lower and upper subunits, along with the coarse-grained unit, formed from platinum-group elements (PGE) in increasingly depleted magma, likely resulting from prior sulfide segregation before emplacement. Furthermore, the differences in Ir and Ru depletion and the variation in the Cu/(Cu + Ni) trend with depth between NTS-1 and NTS-2 were explained by the migration direction of fractional sulfide liquid during sulfide fractionation. We propose that the western end of the Jinchuan intrusion was formed by multi-stage magma emplacement. The strong correlation between exploration data (Ni, Cu, and Cu/(Cu + Ni)) and various sulfide mineralization layers suggests that delineating the spatial range of each sulfide mineralization could provide valuable information for deep mineral prospectivity mapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geochemical Exploration
Journal of Geochemical Exploration 地学-地球化学与地球物理
CiteScore
7.40
自引率
7.70%
发文量
148
审稿时长
8.1 months
期刊介绍: Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics. Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to: define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas. analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation. evaluate effects of historical mining activities on the surface environment. trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices. assess and quantify natural and technogenic radioactivity in the environment. determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis. assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches. Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.
期刊最新文献
Differentiating Triassic W–Sn ore-bearing and ore-free plutons in the Xitian Ore Field (South China) using apatite geochemistry Editorial Board Recycled mantle source for porphyry mineralization: U−Pb and Re−Os geochronology, and S–Pb–Cu isotopic constraints from the Urumieh-Dokhtar magmatic arc, central Iran Numerical simulation of a base metal deposit related to a fossil geothermal system Effect of passive jaw opening on the electromyographic activity of the temporalis, masseter, digastric, and infrahyoid muscles in healthy adults.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1