Hanchen Yu , Nan Jiang , Hongyun Yang , Jixin Shi , Zhenyu Han , Eric Wai Ming Lee , Lizhong Yang
{"title":"不同合流角度和合流布局下的行人合流过程实证分析","authors":"Hanchen Yu , Nan Jiang , Hongyun Yang , Jixin Shi , Zhenyu Han , Eric Wai Ming Lee , Lizhong Yang","doi":"10.1016/j.physa.2024.130218","DOIUrl":null,"url":null,"abstract":"<div><div>Crowd gathering in public infrastructures increases the challenges to safety management. To control the risk of crowd accidents, it is crucial to investigate the specific pedestrian movement characteristics within typical facilities to ensure efficient and safe walking operations. Merging scenarios involve complex multi-directional movements and always be considered dangerous bottlenecks to trigger serious crowd accidents. It demonstrated that the merging angle and layout significantly affect the performance of merging structures. However, most studies treat those properties independently without systematically exploring their combined effects to reflect a more diverse and complex flow status in real situations. In this study, we conduct controlled experiments to investigate the pedestrian merging process with five different merging angles and three different merging layouts. By analyzing the movement status, congestion, and degree of order, the efficiency and risk of different merging scenarios are compared. The lower upstream velocity and faster clogging propagation can be observed as the merging angle increases. While in scenarios with a small merging angle under certain layouts, limited outflows and longer time intervals occur and the stagnation is more frequent. The walking space of pedestrians near the inner side is severely compressed, resulting in higher local density around the corner and exacerbating the clogging nearby. Furthermore, a new indicator named Harmony Index is proposed to describe the adaptability of crowds to different merging setups. These findings are beneficial for optimizing the safe design and crowd management strategies of public infrastructures, as well as the crowd movement setup in relevant modeling works.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"656 ","pages":"Article 130218"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical analysis of pedestrian merging process with different merging angles and merging layouts\",\"authors\":\"Hanchen Yu , Nan Jiang , Hongyun Yang , Jixin Shi , Zhenyu Han , Eric Wai Ming Lee , Lizhong Yang\",\"doi\":\"10.1016/j.physa.2024.130218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Crowd gathering in public infrastructures increases the challenges to safety management. To control the risk of crowd accidents, it is crucial to investigate the specific pedestrian movement characteristics within typical facilities to ensure efficient and safe walking operations. Merging scenarios involve complex multi-directional movements and always be considered dangerous bottlenecks to trigger serious crowd accidents. It demonstrated that the merging angle and layout significantly affect the performance of merging structures. However, most studies treat those properties independently without systematically exploring their combined effects to reflect a more diverse and complex flow status in real situations. In this study, we conduct controlled experiments to investigate the pedestrian merging process with five different merging angles and three different merging layouts. By analyzing the movement status, congestion, and degree of order, the efficiency and risk of different merging scenarios are compared. The lower upstream velocity and faster clogging propagation can be observed as the merging angle increases. While in scenarios with a small merging angle under certain layouts, limited outflows and longer time intervals occur and the stagnation is more frequent. The walking space of pedestrians near the inner side is severely compressed, resulting in higher local density around the corner and exacerbating the clogging nearby. Furthermore, a new indicator named Harmony Index is proposed to describe the adaptability of crowds to different merging setups. These findings are beneficial for optimizing the safe design and crowd management strategies of public infrastructures, as well as the crowd movement setup in relevant modeling works.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"656 \",\"pages\":\"Article 130218\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437124007271\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124007271","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Empirical analysis of pedestrian merging process with different merging angles and merging layouts
Crowd gathering in public infrastructures increases the challenges to safety management. To control the risk of crowd accidents, it is crucial to investigate the specific pedestrian movement characteristics within typical facilities to ensure efficient and safe walking operations. Merging scenarios involve complex multi-directional movements and always be considered dangerous bottlenecks to trigger serious crowd accidents. It demonstrated that the merging angle and layout significantly affect the performance of merging structures. However, most studies treat those properties independently without systematically exploring their combined effects to reflect a more diverse and complex flow status in real situations. In this study, we conduct controlled experiments to investigate the pedestrian merging process with five different merging angles and three different merging layouts. By analyzing the movement status, congestion, and degree of order, the efficiency and risk of different merging scenarios are compared. The lower upstream velocity and faster clogging propagation can be observed as the merging angle increases. While in scenarios with a small merging angle under certain layouts, limited outflows and longer time intervals occur and the stagnation is more frequent. The walking space of pedestrians near the inner side is severely compressed, resulting in higher local density around the corner and exacerbating the clogging nearby. Furthermore, a new indicator named Harmony Index is proposed to describe the adaptability of crowds to different merging setups. These findings are beneficial for optimizing the safe design and crowd management strategies of public infrastructures, as well as the crowd movement setup in relevant modeling works.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.