Fang-Fang Wang, Yu-Jie Wang, Zhao-Feng Qiu, Kai-Yang Zhang, Yue Zhao and Wei-Yin Sun
{"title":"含有四苯基乙烯咪唑配体的铜(i)和钴(ii)框架,用于将 CO2 电还原为 CH4†","authors":"Fang-Fang Wang, Yu-Jie Wang, Zhao-Feng Qiu, Kai-Yang Zhang, Yue Zhao and Wei-Yin Sun","doi":"10.1039/D4CE00991F","DOIUrl":null,"url":null,"abstract":"<p >Targeted development of crystalline materials for the CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) is currently a hot topic. Copper is a common electrocatalyst for the reduction of CO<small><sub>2</sub></small> to CH<small><sub>4</sub></small>. In this study, two new MOFs [Cu(TIPE)<small><sub>0.5</sub></small>](ClO<small><sub>4</sub></small>) (<strong>Cu-MOF</strong>) and [Co(TIPE)(TFA)<small><sub>2</sub></small>]·2DMF (<strong>Co-MOF</strong>) (TIPE = 1,1,2,2-tetrakis(4-(imidazole-1-yl)phenyl)ethene, TFA = trifluoroacetate and DMF = <em>N</em>,<em>N</em>-dimethylformamide) were synthesized. Crystallographic analysis shows that <strong>Cu-MOF</strong> and <strong>Co-MOF</strong> are different 2D networks. Interestingly, <strong>Cu-MOF</strong> can serve as an efficient electrocatalyst for CO<small><sub>2</sub></small> conversion to CH<small><sub>4</sub></small>, while the <strong>Co-MOF</strong> is not suitable for the electrocatalytic CO<small><sub>2</sub></small>RR due to its low stability. In 1 M KOH electrolyte, <strong>Cu-MOF</strong> exhibits high performance for the electrocatalytic reduction of CO<small><sub>2</sub></small> to CH<small><sub>4</sub></small> with a faradaic efficiency (FE) of 41.53% at a potential of −1.28 V <em>vs.</em> RHE. The high performance and stability may be caused by the framework structure leading to a large electrochemically active surface area and fast charge transfer kinetics. This work offers an approach to design and construct CO<small><sub>2</sub></small> electroreduction catalysts and viable solutions to energy and environmental issues caused by excessive CO<small><sub>2</sub></small> emission.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 45","pages":" 6465-6471"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper(i) and cobalt(ii) frameworks with a tetraphenylethene–imidazole ligand for the electroreduction of CO2 to CH4†\",\"authors\":\"Fang-Fang Wang, Yu-Jie Wang, Zhao-Feng Qiu, Kai-Yang Zhang, Yue Zhao and Wei-Yin Sun\",\"doi\":\"10.1039/D4CE00991F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Targeted development of crystalline materials for the CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) is currently a hot topic. Copper is a common electrocatalyst for the reduction of CO<small><sub>2</sub></small> to CH<small><sub>4</sub></small>. In this study, two new MOFs [Cu(TIPE)<small><sub>0.5</sub></small>](ClO<small><sub>4</sub></small>) (<strong>Cu-MOF</strong>) and [Co(TIPE)(TFA)<small><sub>2</sub></small>]·2DMF (<strong>Co-MOF</strong>) (TIPE = 1,1,2,2-tetrakis(4-(imidazole-1-yl)phenyl)ethene, TFA = trifluoroacetate and DMF = <em>N</em>,<em>N</em>-dimethylformamide) were synthesized. Crystallographic analysis shows that <strong>Cu-MOF</strong> and <strong>Co-MOF</strong> are different 2D networks. Interestingly, <strong>Cu-MOF</strong> can serve as an efficient electrocatalyst for CO<small><sub>2</sub></small> conversion to CH<small><sub>4</sub></small>, while the <strong>Co-MOF</strong> is not suitable for the electrocatalytic CO<small><sub>2</sub></small>RR due to its low stability. In 1 M KOH electrolyte, <strong>Cu-MOF</strong> exhibits high performance for the electrocatalytic reduction of CO<small><sub>2</sub></small> to CH<small><sub>4</sub></small> with a faradaic efficiency (FE) of 41.53% at a potential of −1.28 V <em>vs.</em> RHE. The high performance and stability may be caused by the framework structure leading to a large electrochemically active surface area and fast charge transfer kinetics. This work offers an approach to design and construct CO<small><sub>2</sub></small> electroreduction catalysts and viable solutions to energy and environmental issues caused by excessive CO<small><sub>2</sub></small> emission.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 45\",\"pages\":\" 6465-6471\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00991f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00991f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
有针对性地开发用于二氧化碳还原反应(CO2RR)的晶体材料是当前的热门话题。铜是将 CO2 还原成 CH4 的常用电催化剂。本研究合成了两种新型 MOF [Cu(TIPE)0.5](ClO4)(Cu-MOF)和 [Co(TIPE)(TFA)2]-2DMF(Co-MOF)(TIPE = 1,1,2,2-四(4-(咪唑-1-基)苯基)乙烯,TFA = 三氟乙酸盐,DMF = N,N-二甲基甲酰胺)。晶体分析表明,Cu-MOF 和 Co-MOF 是不同的二维网络。有趣的是,Cu-MOF 可作为将 CO2 转化为 CH4 的高效电催化剂,而 Co-MOF 由于稳定性低而不适合电催化 CO2RR。在 1 M KOH 电解液中,Cu-MOF 在电位为 -1.28 V 时与 RHE 相比,将 CO2 电催化还原为 CH4 的效率高达 41.53%。这种高性能和稳定性可能是由于框架结构导致了较大的电化学活性表面积和快速的电荷转移动力学。这项研究为设计和构建二氧化碳电还原催化剂提供了一种方法,也为解决二氧化碳过量排放造成的能源和环境问题提供了可行的解决方案。
Copper(i) and cobalt(ii) frameworks with a tetraphenylethene–imidazole ligand for the electroreduction of CO2 to CH4†
Targeted development of crystalline materials for the CO2 reduction reaction (CO2RR) is currently a hot topic. Copper is a common electrocatalyst for the reduction of CO2 to CH4. In this study, two new MOFs [Cu(TIPE)0.5](ClO4) (Cu-MOF) and [Co(TIPE)(TFA)2]·2DMF (Co-MOF) (TIPE = 1,1,2,2-tetrakis(4-(imidazole-1-yl)phenyl)ethene, TFA = trifluoroacetate and DMF = N,N-dimethylformamide) were synthesized. Crystallographic analysis shows that Cu-MOF and Co-MOF are different 2D networks. Interestingly, Cu-MOF can serve as an efficient electrocatalyst for CO2 conversion to CH4, while the Co-MOF is not suitable for the electrocatalytic CO2RR due to its low stability. In 1 M KOH electrolyte, Cu-MOF exhibits high performance for the electrocatalytic reduction of CO2 to CH4 with a faradaic efficiency (FE) of 41.53% at a potential of −1.28 V vs. RHE. The high performance and stability may be caused by the framework structure leading to a large electrochemically active surface area and fast charge transfer kinetics. This work offers an approach to design and construct CO2 electroreduction catalysts and viable solutions to energy and environmental issues caused by excessive CO2 emission.