{"title":"利用塔拉胶的细胞相容性聚合物衍生物绿色合成银纳米粒子,用于检测水样中的金(III)离子","authors":"Titilope John Jayeoye, Sudarshan Singh, Fredrick Nwude Eze, Oyenike Olatunji, Ilemobayo Oguntimehin, Andrew Aondoaver Tyopine, Oghale Beauty Odogiyon, Opeyemi Joshua Olatunji","doi":"10.1007/s10924-024-03393-4","DOIUrl":null,"url":null,"abstract":"<div><p>Polymers blending has attracted significant interest in recent years owing to the possibility of synergistic interactions between blended materials which can be impressively beneficial over single substrates. Herein, a Tara gum derivative-(PVA-TG) blend was exploited as stabilizing agent for the synthesis of cyto-compatible PAPBA/(PVA-TG)/Ag, colloidal nanocomposite. Based on the in-situ oxidative polymerization strategy, 3-aminobenzene boronic acid (ABBA), was used for the reduction of silver salt, inside highly hydrophilic (PVA-TG) blend. As a result, AgNPs is formed, while ABBA, is oxidized to its conducting polymer conformation (PAPBA), all within the blended polymers solution. PAPBA/(PVA-TG)/Ag, showed dose-dependent cell viability with IC<sub>50</sub> of 3.9 µg/mL against human keratinocytes (HaCaT) cells, based on in vitro MTT assay, which attested to its cyto-compatibility. The material was fully characterized using various analytical equipment and was deployed for the detection of metal ion (Au<sup>3+</sup> ion) in solution. At the optimal detection conditions, absorbance ratios, (A<sub>560</sub>/A<sub>429</sub>) displayed linearity with Au<sup>3+</sup> concentrations from 0.10 to 10.0 & 10.0–80.0 µM, with 28.5 nM detection limit (LOD). Further, the mechanistic basis of the detection strategy was proven to be based on galvanic replacement and was applied to Au<sup>3+</sup> detection/monitoring in environmental samples with reliable precision and accuracy (99.4–102.3%). In all, we have showcased an innovatively contrived synthesis strategy which can be of huge benefit in toxic metal ions monitoring in water samples.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 12","pages":"6667 - 6686"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Synthesis of Silver Nanoparticles Using Cyto-compatible Polymer Derivative of Tara Gum for Gold (III) ion Detection in Water Samples\",\"authors\":\"Titilope John Jayeoye, Sudarshan Singh, Fredrick Nwude Eze, Oyenike Olatunji, Ilemobayo Oguntimehin, Andrew Aondoaver Tyopine, Oghale Beauty Odogiyon, Opeyemi Joshua Olatunji\",\"doi\":\"10.1007/s10924-024-03393-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polymers blending has attracted significant interest in recent years owing to the possibility of synergistic interactions between blended materials which can be impressively beneficial over single substrates. Herein, a Tara gum derivative-(PVA-TG) blend was exploited as stabilizing agent for the synthesis of cyto-compatible PAPBA/(PVA-TG)/Ag, colloidal nanocomposite. Based on the in-situ oxidative polymerization strategy, 3-aminobenzene boronic acid (ABBA), was used for the reduction of silver salt, inside highly hydrophilic (PVA-TG) blend. As a result, AgNPs is formed, while ABBA, is oxidized to its conducting polymer conformation (PAPBA), all within the blended polymers solution. PAPBA/(PVA-TG)/Ag, showed dose-dependent cell viability with IC<sub>50</sub> of 3.9 µg/mL against human keratinocytes (HaCaT) cells, based on in vitro MTT assay, which attested to its cyto-compatibility. The material was fully characterized using various analytical equipment and was deployed for the detection of metal ion (Au<sup>3+</sup> ion) in solution. At the optimal detection conditions, absorbance ratios, (A<sub>560</sub>/A<sub>429</sub>) displayed linearity with Au<sup>3+</sup> concentrations from 0.10 to 10.0 & 10.0–80.0 µM, with 28.5 nM detection limit (LOD). Further, the mechanistic basis of the detection strategy was proven to be based on galvanic replacement and was applied to Au<sup>3+</sup> detection/monitoring in environmental samples with reliable precision and accuracy (99.4–102.3%). In all, we have showcased an innovatively contrived synthesis strategy which can be of huge benefit in toxic metal ions monitoring in water samples.</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"32 12\",\"pages\":\"6667 - 6686\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-024-03393-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03393-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Green Synthesis of Silver Nanoparticles Using Cyto-compatible Polymer Derivative of Tara Gum for Gold (III) ion Detection in Water Samples
Polymers blending has attracted significant interest in recent years owing to the possibility of synergistic interactions between blended materials which can be impressively beneficial over single substrates. Herein, a Tara gum derivative-(PVA-TG) blend was exploited as stabilizing agent for the synthesis of cyto-compatible PAPBA/(PVA-TG)/Ag, colloidal nanocomposite. Based on the in-situ oxidative polymerization strategy, 3-aminobenzene boronic acid (ABBA), was used for the reduction of silver salt, inside highly hydrophilic (PVA-TG) blend. As a result, AgNPs is formed, while ABBA, is oxidized to its conducting polymer conformation (PAPBA), all within the blended polymers solution. PAPBA/(PVA-TG)/Ag, showed dose-dependent cell viability with IC50 of 3.9 µg/mL against human keratinocytes (HaCaT) cells, based on in vitro MTT assay, which attested to its cyto-compatibility. The material was fully characterized using various analytical equipment and was deployed for the detection of metal ion (Au3+ ion) in solution. At the optimal detection conditions, absorbance ratios, (A560/A429) displayed linearity with Au3+ concentrations from 0.10 to 10.0 & 10.0–80.0 µM, with 28.5 nM detection limit (LOD). Further, the mechanistic basis of the detection strategy was proven to be based on galvanic replacement and was applied to Au3+ detection/monitoring in environmental samples with reliable precision and accuracy (99.4–102.3%). In all, we have showcased an innovatively contrived synthesis strategy which can be of huge benefit in toxic metal ions monitoring in water samples.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.