利用混合机器学习系统和热成像技术预测乳腺癌的早期发现

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Imaging Systems and Technology Pub Date : 2024-11-16 DOI:10.1002/ima.23211
Mohammad Mehdi Hosseini, Zahra Mosahebeh, Somenath Chakraborty, Abdorreza Alavi Gharahbagh
{"title":"利用混合机器学习系统和热成像技术预测乳腺癌的早期发现","authors":"Mohammad Mehdi Hosseini,&nbsp;Zahra Mosahebeh,&nbsp;Somenath Chakraborty,&nbsp;Abdorreza Alavi Gharahbagh","doi":"10.1002/ima.23211","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Breast cancer is a leading cause of mortality among women, emphasizing the critical need for precise early detection and prognosis. However, conventional methods often struggle to differentiate precancerous lesions or tailor treatments effectively. Thermal imaging, capturing subtle temperature variations, presents a promising avenue for non-invasive cancer detection. While some studies explore thermography for breast cancer detection, integrating it with advanced machine learning for early diagnosis and personalized prediction remains relatively unexplored. This study proposes a novel hybrid machine learning system (HMLS) incorporating deep autoencoder techniques for automated early detection and prognostic stratification of breast cancer patients. By exploiting the temporal dynamics of thermographic data, this approach offers a more comprehensive analysis than static single-frame approaches. Data processing involves splitting the dataset for training and testing. A predominant infrared image was selected, and matrix factorization was applied to capture temperature changes over time. Integration of convex factor analysis and bell-curve membership function embedding for dimensionality reduction and feature extraction. The autoencoder deep neural network further reduces dimensionality. HMLS model development included feature selection and optimization of survival prediction algorithms through cross-validation. Model performance was assessed using accuracy and F-measure metrics. HMLS, integrating clinical data, achieved 81.6% accuracy, surpassing 77.6% using only convex-NMF. The best classifier attained 83.2% accuracy on test data. This study demonstrates the effectiveness of thermographic imaging and HMLS for accurate early detection and personalized prediction of breast cancer. The proposed framework holds promise for enhancing patient care and potentially reducing mortality rates.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Early Detection of Breast Cancer Using Hybrid Machine Learning Systems and Thermographic Imaging\",\"authors\":\"Mohammad Mehdi Hosseini,&nbsp;Zahra Mosahebeh,&nbsp;Somenath Chakraborty,&nbsp;Abdorreza Alavi Gharahbagh\",\"doi\":\"10.1002/ima.23211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Breast cancer is a leading cause of mortality among women, emphasizing the critical need for precise early detection and prognosis. However, conventional methods often struggle to differentiate precancerous lesions or tailor treatments effectively. Thermal imaging, capturing subtle temperature variations, presents a promising avenue for non-invasive cancer detection. While some studies explore thermography for breast cancer detection, integrating it with advanced machine learning for early diagnosis and personalized prediction remains relatively unexplored. This study proposes a novel hybrid machine learning system (HMLS) incorporating deep autoencoder techniques for automated early detection and prognostic stratification of breast cancer patients. By exploiting the temporal dynamics of thermographic data, this approach offers a more comprehensive analysis than static single-frame approaches. Data processing involves splitting the dataset for training and testing. A predominant infrared image was selected, and matrix factorization was applied to capture temperature changes over time. Integration of convex factor analysis and bell-curve membership function embedding for dimensionality reduction and feature extraction. The autoencoder deep neural network further reduces dimensionality. HMLS model development included feature selection and optimization of survival prediction algorithms through cross-validation. Model performance was assessed using accuracy and F-measure metrics. HMLS, integrating clinical data, achieved 81.6% accuracy, surpassing 77.6% using only convex-NMF. The best classifier attained 83.2% accuracy on test data. This study demonstrates the effectiveness of thermographic imaging and HMLS for accurate early detection and personalized prediction of breast cancer. The proposed framework holds promise for enhancing patient care and potentially reducing mortality rates.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23211\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23211","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是导致妇女死亡的主要原因之一,因此强调精确的早期检测和预后至关重要。然而,传统方法往往难以区分癌前病变或有效地调整治疗方法。热成像技术能捕捉微妙的温度变化,是一种很有前景的非侵入性癌症检测方法。虽然一些研究探讨了热成像技术在乳腺癌检测中的应用,但将其与先进的机器学习技术相结合,用于早期诊断和个性化预测的研究仍相对较少。本研究提出了一种新型混合机器学习系统(HMLS),该系统结合了深度自动编码器技术,用于乳腺癌患者的自动早期检测和预后分层。通过利用热成像数据的时间动态,该方法可提供比静态单帧方法更全面的分析。数据处理包括拆分数据集进行训练和测试。选择一个主要的红外图像,并应用矩阵因式分解来捕捉温度随时间的变化。整合凸因子分析和钟形曲线成员函数嵌入,以实现降维和特征提取。自动编码器深度神经网络进一步降低了维度。HMLS 模型开发包括特征选择和通过交叉验证优化生存预测算法。使用准确率和 F-measure 指标评估模型性能。整合临床数据的 HMLS 准确率达到 81.6%,超过了仅使用凸 NMF 的 77.6%。最佳分类器在测试数据上达到了 83.2% 的准确率。这项研究证明了热成像和 HMLS 在准确早期检测和个性化预测乳腺癌方面的有效性。所提出的框架有望加强对患者的护理,并有可能降低死亡率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the Early Detection of Breast Cancer Using Hybrid Machine Learning Systems and Thermographic Imaging

Breast cancer is a leading cause of mortality among women, emphasizing the critical need for precise early detection and prognosis. However, conventional methods often struggle to differentiate precancerous lesions or tailor treatments effectively. Thermal imaging, capturing subtle temperature variations, presents a promising avenue for non-invasive cancer detection. While some studies explore thermography for breast cancer detection, integrating it with advanced machine learning for early diagnosis and personalized prediction remains relatively unexplored. This study proposes a novel hybrid machine learning system (HMLS) incorporating deep autoencoder techniques for automated early detection and prognostic stratification of breast cancer patients. By exploiting the temporal dynamics of thermographic data, this approach offers a more comprehensive analysis than static single-frame approaches. Data processing involves splitting the dataset for training and testing. A predominant infrared image was selected, and matrix factorization was applied to capture temperature changes over time. Integration of convex factor analysis and bell-curve membership function embedding for dimensionality reduction and feature extraction. The autoencoder deep neural network further reduces dimensionality. HMLS model development included feature selection and optimization of survival prediction algorithms through cross-validation. Model performance was assessed using accuracy and F-measure metrics. HMLS, integrating clinical data, achieved 81.6% accuracy, surpassing 77.6% using only convex-NMF. The best classifier attained 83.2% accuracy on test data. This study demonstrates the effectiveness of thermographic imaging and HMLS for accurate early detection and personalized prediction of breast cancer. The proposed framework holds promise for enhancing patient care and potentially reducing mortality rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
期刊最新文献
Predicting the Early Detection of Breast Cancer Using Hybrid Machine Learning Systems and Thermographic Imaging CATNet: A Cross Attention and Texture-Aware Network for Polyp Segmentation VMC-UNet: A Vision Mamba-CNN U-Net for Tumor Segmentation in Breast Ultrasound Image Suppression of the Tissue Component With the Total Least-Squares Algorithm to Improve Second Harmonic Imaging of Ultrasound Contrast Agents Segmentation and Classification of Breast Masses From the Whole Mammography Images Using Transfer Learning and BI-RADS Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1