{"title":"优化均值场自旋玻璃的严格 Lipschitz 硬度","authors":"Brice Huang, Mark Sellke","doi":"10.1002/cpa.22222","DOIUrl":null,"url":null,"abstract":"<p>We study the problem of algorithmically optimizing the Hamiltonian <span></span><math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mi>N</mi>\n </msub>\n <annotation>$H_N$</annotation>\n </semantics></math> of a spherical or Ising mixed <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-spin glass. The maximum asymptotic value <span></span><math>\n <semantics>\n <mi>OPT</mi>\n <annotation>${\\mathsf {OPT}}$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mi>N</mi>\n </msub>\n <mo>/</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$H_N/N$</annotation>\n </semantics></math> is characterized by a variational principle known as the Parisi formula, proved first by Talagrand and in more generality by Panchenko. Recently developed approximate message passing (AMP) algorithms efficiently optimize <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mi>N</mi>\n </msub>\n <mo>/</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$H_N/N$</annotation>\n </semantics></math> up to a value <span></span><math>\n <semantics>\n <mi>ALG</mi>\n <annotation>${\\mathsf {ALG}}$</annotation>\n </semantics></math> given by an extended Parisi formula, which minimizes over a larger space of functional order parameters. These two objectives are equal for spin glasses exhibiting a <i>no overlap gap</i> property (OGP). However, <span></span><math>\n <semantics>\n <mrow>\n <mi>ALG</mi>\n <mo><</mo>\n <mi>OPT</mi>\n </mrow>\n <annotation>${\\mathsf {ALG}}&lt; {\\mathsf {OPT}}$</annotation>\n </semantics></math> can also occur, and no efficient algorithm producing an objective value exceeding <span></span><math>\n <semantics>\n <mi>ALG</mi>\n <annotation>${\\mathsf {ALG}}$</annotation>\n </semantics></math> is known. We prove that for mixed even <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-spin models, no algorithm satisfying an <i>overlap concentration</i> property can produce an objective larger than <span></span><math>\n <semantics>\n <mi>ALG</mi>\n <annotation>${\\mathsf {ALG}}$</annotation>\n </semantics></math> with non-negligible probability. This property holds for all algorithms with suitably Lipschitz dependence on the disorder coefficients of <span></span><math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mi>N</mi>\n </msub>\n <annotation>$H_N$</annotation>\n </semantics></math>. It encompasses natural formulations of gradient descent, AMP, and Langevin dynamics run for bounded time and in particular includes the algorithms achieving <span></span><math>\n <semantics>\n <mi>ALG</mi>\n <annotation>${\\mathsf {ALG}}$</annotation>\n </semantics></math> mentioned above. To prove this result, we substantially generalize the OGP framework introduced by Gamarnik and Sudan to arbitrary ultrametric forbidden structures of solutions.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 1","pages":"60-119"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tight Lipschitz hardness for optimizing mean field spin glasses\",\"authors\":\"Brice Huang, Mark Sellke\",\"doi\":\"10.1002/cpa.22222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the problem of algorithmically optimizing the Hamiltonian <span></span><math>\\n <semantics>\\n <msub>\\n <mi>H</mi>\\n <mi>N</mi>\\n </msub>\\n <annotation>$H_N$</annotation>\\n </semantics></math> of a spherical or Ising mixed <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-spin glass. The maximum asymptotic value <span></span><math>\\n <semantics>\\n <mi>OPT</mi>\\n <annotation>${\\\\mathsf {OPT}}$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mi>N</mi>\\n </msub>\\n <mo>/</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$H_N/N$</annotation>\\n </semantics></math> is characterized by a variational principle known as the Parisi formula, proved first by Talagrand and in more generality by Panchenko. Recently developed approximate message passing (AMP) algorithms efficiently optimize <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mi>N</mi>\\n </msub>\\n <mo>/</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$H_N/N$</annotation>\\n </semantics></math> up to a value <span></span><math>\\n <semantics>\\n <mi>ALG</mi>\\n <annotation>${\\\\mathsf {ALG}}$</annotation>\\n </semantics></math> given by an extended Parisi formula, which minimizes over a larger space of functional order parameters. These two objectives are equal for spin glasses exhibiting a <i>no overlap gap</i> property (OGP). However, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ALG</mi>\\n <mo><</mo>\\n <mi>OPT</mi>\\n </mrow>\\n <annotation>${\\\\mathsf {ALG}}&lt; {\\\\mathsf {OPT}}$</annotation>\\n </semantics></math> can also occur, and no efficient algorithm producing an objective value exceeding <span></span><math>\\n <semantics>\\n <mi>ALG</mi>\\n <annotation>${\\\\mathsf {ALG}}$</annotation>\\n </semantics></math> is known. We prove that for mixed even <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-spin models, no algorithm satisfying an <i>overlap concentration</i> property can produce an objective larger than <span></span><math>\\n <semantics>\\n <mi>ALG</mi>\\n <annotation>${\\\\mathsf {ALG}}$</annotation>\\n </semantics></math> with non-negligible probability. This property holds for all algorithms with suitably Lipschitz dependence on the disorder coefficients of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>H</mi>\\n <mi>N</mi>\\n </msub>\\n <annotation>$H_N$</annotation>\\n </semantics></math>. It encompasses natural formulations of gradient descent, AMP, and Langevin dynamics run for bounded time and in particular includes the algorithms achieving <span></span><math>\\n <semantics>\\n <mi>ALG</mi>\\n <annotation>${\\\\mathsf {ALG}}$</annotation>\\n </semantics></math> mentioned above. To prove this result, we substantially generalize the OGP framework introduced by Gamarnik and Sudan to arbitrary ultrametric forbidden structures of solutions.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"78 1\",\"pages\":\"60-119\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22222\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22222","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了球面或伊辛混合 p $p$ -自旋玻璃的哈密顿H N $H_N$ 的算法优化问题。H N / N $H_N/N$ 的最大渐近值 OPT ${\mathsf {OPT}}$ 是由一个称为帕里西公式的变分原理表征的。最近开发的近似消息传递(AMP)算法可以有效优化 H N / N $H_N/N$ 达到扩展帕里西公式给出的值 ALG ${\mathsf {ALG}}$,该值在更大的功能阶参数空间上最小化。对于表现出无重叠间隙特性(OGP)的自旋玻璃来说,这两个目标是相等的。然而,ALG < OPT ${\mathsf {ALG}}< {\mathsf {OPT}}$ 也可能出现,而且目前还不知道哪种高效算法能产生超过 ALG ${\mathsf {ALG}}$ 的目标值。我们证明,对于混合偶数 p $p$ -自旋模型,没有一种满足重叠集中特性的算法能以不可忽略的概率产生大于 ALG ${\mathsf {ALG}}$的目标值。这一特性适用于所有对 H N $H_N$ 的无序系数具有适当 Lipschitz 依赖性的算法。它包括梯度下降、AMP 和朗格文动力学在有界时间内运行的自然公式,尤其包括上述实现 ALG ${mathsf {ALG}}$的算法。为了证明这一结果,我们将 Gamarnik 和 Sudan 引入的 OGP 框架大幅推广到任意超对称禁止解结构。
Tight Lipschitz hardness for optimizing mean field spin glasses
We study the problem of algorithmically optimizing the Hamiltonian of a spherical or Ising mixed -spin glass. The maximum asymptotic value of is characterized by a variational principle known as the Parisi formula, proved first by Talagrand and in more generality by Panchenko. Recently developed approximate message passing (AMP) algorithms efficiently optimize up to a value given by an extended Parisi formula, which minimizes over a larger space of functional order parameters. These two objectives are equal for spin glasses exhibiting a no overlap gap property (OGP). However, can also occur, and no efficient algorithm producing an objective value exceeding is known. We prove that for mixed even -spin models, no algorithm satisfying an overlap concentration property can produce an objective larger than with non-negligible probability. This property holds for all algorithms with suitably Lipschitz dependence on the disorder coefficients of . It encompasses natural formulations of gradient descent, AMP, and Langevin dynamics run for bounded time and in particular includes the algorithms achieving mentioned above. To prove this result, we substantially generalize the OGP framework introduced by Gamarnik and Sudan to arbitrary ultrametric forbidden structures of solutions.