在h-BN/石墨烯/h-BN范德华垂直异质结构中产生具有光电效应的纯自旋电流

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2024-11-18 DOI:10.1039/d4cp03650f
Xixi Tao, Peng Jiang, Yaojun Dong, Jinhua Zhou, Xifeng Yang, Xiaohong Zheng, Yushen Liu
{"title":"在h-BN/石墨烯/h-BN范德华垂直异质结构中产生具有光电效应的纯自旋电流","authors":"Xixi Tao, Peng Jiang, Yaojun Dong, Jinhua Zhou, Xifeng Yang, Xiaohong Zheng, Yushen Liu","doi":"10.1039/d4cp03650f","DOIUrl":null,"url":null,"abstract":"We have computationally demonstrated a new method for generating pure spin current with the photogalvanic effect (PGE) by constructing transport junctions using h-BN/graphene/h-BN van der Waals (vdW) heterostructure leads. It has been observed that the pure spin current without any accompanying charge current induced by the PGE can consistently be obtained, regardless of photon energy and polarization/helicity angle, as well as the specific type of polarization (linear, circular, or elliptical). The mechanism lies in the structural inversion symmetry and real space spin polarization antisymmetry of the junctions. We also found that pure spin current can be generated whether we decrease or increase the interlayer distance by applying compressive or tensile strain to the h-BN/graphene/h-BN vdW vertical heterostructure leads. Additionally, by increasing the h-BN sheets on both sides of the graphene nanoribbons for the two leads, we observed large spin splitting and were able to generate pure spin current. These findings provide a new approach for achieving pure spin current in graphene nanoribbons and highlight the significance of vdW heterostructures in designing spintronic devices.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"18 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pure spin current generation with photogalvanic effect in h-BN/Graphene/h-BN van der Waals vertical heterostructure\",\"authors\":\"Xixi Tao, Peng Jiang, Yaojun Dong, Jinhua Zhou, Xifeng Yang, Xiaohong Zheng, Yushen Liu\",\"doi\":\"10.1039/d4cp03650f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have computationally demonstrated a new method for generating pure spin current with the photogalvanic effect (PGE) by constructing transport junctions using h-BN/graphene/h-BN van der Waals (vdW) heterostructure leads. It has been observed that the pure spin current without any accompanying charge current induced by the PGE can consistently be obtained, regardless of photon energy and polarization/helicity angle, as well as the specific type of polarization (linear, circular, or elliptical). The mechanism lies in the structural inversion symmetry and real space spin polarization antisymmetry of the junctions. We also found that pure spin current can be generated whether we decrease or increase the interlayer distance by applying compressive or tensile strain to the h-BN/graphene/h-BN vdW vertical heterostructure leads. Additionally, by increasing the h-BN sheets on both sides of the graphene nanoribbons for the two leads, we observed large spin splitting and were able to generate pure spin current. These findings provide a new approach for achieving pure spin current in graphene nanoribbons and highlight the significance of vdW heterostructures in designing spintronic devices.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4cp03650f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp03650f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们通过计算证明了一种新方法,即利用h-BN/石墨烯/h-BN范德瓦尔斯(vdW)异质结构引线构建传输结,从而利用光电晕效应(PGE)产生纯自旋电流。研究发现,无论光子能量、偏振/斜角以及偏振的具体类型(线性、圆形或椭圆形)如何,都能持续获得由 PGE 诱导的纯自旋电流,而不伴随任何电荷电流。其机理在于结的结构反转对称性和实空间自旋极化不对称性。我们还发现,无论通过对 h-BN/ 石墨烯/h-BN vdW 垂直异质结构引线施加压缩或拉伸应变来减少或增加层间距离,都能产生纯自旋电流。此外,通过增加两个引线的石墨烯纳米带两侧的 h-BN 片,我们观察到了较大的自旋分裂,并能够产生纯自旋电流。这些发现为在石墨烯纳米带中实现纯自旋电流提供了一种新方法,并凸显了 vdW 异质结构在设计自旋电子器件中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pure spin current generation with photogalvanic effect in h-BN/Graphene/h-BN van der Waals vertical heterostructure
We have computationally demonstrated a new method for generating pure spin current with the photogalvanic effect (PGE) by constructing transport junctions using h-BN/graphene/h-BN van der Waals (vdW) heterostructure leads. It has been observed that the pure spin current without any accompanying charge current induced by the PGE can consistently be obtained, regardless of photon energy and polarization/helicity angle, as well as the specific type of polarization (linear, circular, or elliptical). The mechanism lies in the structural inversion symmetry and real space spin polarization antisymmetry of the junctions. We also found that pure spin current can be generated whether we decrease or increase the interlayer distance by applying compressive or tensile strain to the h-BN/graphene/h-BN vdW vertical heterostructure leads. Additionally, by increasing the h-BN sheets on both sides of the graphene nanoribbons for the two leads, we observed large spin splitting and were able to generate pure spin current. These findings provide a new approach for achieving pure spin current in graphene nanoribbons and highlight the significance of vdW heterostructures in designing spintronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
Beyond 22% Power Conversion Efficiency in Type-II MoSi2As4/MoGe2N4 Photovoltaic vdW Heterostructure Kinetics of tautomerisation of thiouracils and cognate species at low temperatures: theory versus experiment Investigating Valence Orbitals and Cationic Structure of 2,6-Difluoropyridine via High-Resolution VUV-MATI Spectroscopy and Franck–Condon Simulations Nonadiabatic ab initio chemical reaction dynamics for the photoisomerization reaction of 3,5-dimethylisoxazole via the S1 electronic state Simple Carbenes as Hydrogen-Bond Acceptors: Nucleophilicities and Reduced Nucleophilicities determined ab initio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1