调查氧气、二氧化碳和乙烯气体在贮藏过程中对喀什柑橘的影响

IF 2.3 Q1 AGRICULTURE, MULTIDISCIPLINARY ACS agricultural science & technology Pub Date : 2024-10-30 DOI:10.1021/acsagscitech.4c0037510.1021/acsagscitech.4c00375
Raj Singh, C. Nickhil*, R. Nisha, Konga Upendar and Sankar Chandra Deka, 
{"title":"调查氧气、二氧化碳和乙烯气体在贮藏过程中对喀什柑橘的影响","authors":"Raj Singh,&nbsp;C. Nickhil*,&nbsp;R. Nisha,&nbsp;Konga Upendar and Sankar Chandra Deka,&nbsp;","doi":"10.1021/acsagscitech.4c0037510.1021/acsagscitech.4c00375","DOIUrl":null,"url":null,"abstract":"<p >This study presents on predicting the shelf life of’Khasi mandarin’ oranges stored under specific conditions through the analysis of their respiration rate and ripeness levels. By employing a finely tuned deep convolutional neural network (CNN) trained on 1284 images of’Khasi mandarin’ oranges, the research classifies the fruit into four ripeness categories: unripe, partially ripe, ripe, and over-ripe. Stored at temperature (26.39 ± 3.07 °C) and humidity level between 60 and 80%, the CO<sub>2</sub> respiration rate (<i>RR</i><sub>CO2</sub>) was calculated based on enzyme kinetics principles to correlate with these ripeness levels, indicating a shift toward anaerobic respiration as the fruit undergoes ripening and metabolic changes. Moreover, ethylene release, initially at 0.43 ± 0.017 mL/kg/h on day 0, precipitously increased to 6.943 ± 0.0296 mL/kg/h by day 17, reflecting the ripening process. A support vector regression model predicts shelf life and ripeness levels, creating an AI-based soft sensor applicable to various fruits. This approach enables dynamic decision-making in pricing, logistics, and storage conditions, reducing fruit waste and economic losses. Integrating AI-driven solutions into postharvest handling enhances efficiency and sustainability in fruit distribution and storage, benefiting agricultural and retail industries.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 11","pages":"1206–1215 1206–1215"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Effect of Oxygen, Carbon Dioxide, and Ethylene Gases on Khasi Mandarin’ Orange Fruit during Storage\",\"authors\":\"Raj Singh,&nbsp;C. Nickhil*,&nbsp;R. Nisha,&nbsp;Konga Upendar and Sankar Chandra Deka,&nbsp;\",\"doi\":\"10.1021/acsagscitech.4c0037510.1021/acsagscitech.4c00375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study presents on predicting the shelf life of’Khasi mandarin’ oranges stored under specific conditions through the analysis of their respiration rate and ripeness levels. By employing a finely tuned deep convolutional neural network (CNN) trained on 1284 images of’Khasi mandarin’ oranges, the research classifies the fruit into four ripeness categories: unripe, partially ripe, ripe, and over-ripe. Stored at temperature (26.39 ± 3.07 °C) and humidity level between 60 and 80%, the CO<sub>2</sub> respiration rate (<i>RR</i><sub>CO2</sub>) was calculated based on enzyme kinetics principles to correlate with these ripeness levels, indicating a shift toward anaerobic respiration as the fruit undergoes ripening and metabolic changes. Moreover, ethylene release, initially at 0.43 ± 0.017 mL/kg/h on day 0, precipitously increased to 6.943 ± 0.0296 mL/kg/h by day 17, reflecting the ripening process. A support vector regression model predicts shelf life and ripeness levels, creating an AI-based soft sensor applicable to various fruits. This approach enables dynamic decision-making in pricing, logistics, and storage conditions, reducing fruit waste and economic losses. Integrating AI-driven solutions into postharvest handling enhances efficiency and sustainability in fruit distribution and storage, benefiting agricultural and retail industries.</p>\",\"PeriodicalId\":93846,\"journal\":{\"name\":\"ACS agricultural science & technology\",\"volume\":\"4 11\",\"pages\":\"1206–1215 1206–1215\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS agricultural science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsagscitech.4c00375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.4c00375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过分析 "卡西蜜柑 "的呼吸速率和成熟度水平,预测在特定条件下储存的 "卡西蜜柑 "的货架期。该研究利用在 1284 张 "卡西蜜柑 "图像上训练的深度卷积神经网络(CNN),将水果分为四种成熟度类别:未熟、半熟、成熟和过熟。在温度(26.39 ± 3.07 °C)和湿度水平介于 60% 和 80% 之间的条件下储存,根据酶动力学原理计算出的二氧化碳呼吸速率(RRCO2)与这些成熟度等级相关,表明随着果实的成熟和新陈代谢的变化,果实转向厌氧呼吸。此外,乙烯释放量从第 0 天的 0.43 ± 0.017 mL/kg/h 骤增至第 17 天的 6.943 ± 0.0296 mL/kg/h,反映了成熟过程。支持向量回归模型可预测保质期和成熟度水平,从而创建一个适用于各种水果的基于人工智能的软传感器。这种方法能够在定价、物流和储存条件方面实现动态决策,减少水果浪费和经济损失。将人工智能驱动的解决方案整合到采后处理中,提高了水果配送和储存的效率和可持续性,使农业和零售业受益匪浅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating the Effect of Oxygen, Carbon Dioxide, and Ethylene Gases on Khasi Mandarin’ Orange Fruit during Storage

This study presents on predicting the shelf life of’Khasi mandarin’ oranges stored under specific conditions through the analysis of their respiration rate and ripeness levels. By employing a finely tuned deep convolutional neural network (CNN) trained on 1284 images of’Khasi mandarin’ oranges, the research classifies the fruit into four ripeness categories: unripe, partially ripe, ripe, and over-ripe. Stored at temperature (26.39 ± 3.07 °C) and humidity level between 60 and 80%, the CO2 respiration rate (RRCO2) was calculated based on enzyme kinetics principles to correlate with these ripeness levels, indicating a shift toward anaerobic respiration as the fruit undergoes ripening and metabolic changes. Moreover, ethylene release, initially at 0.43 ± 0.017 mL/kg/h on day 0, precipitously increased to 6.943 ± 0.0296 mL/kg/h by day 17, reflecting the ripening process. A support vector regression model predicts shelf life and ripeness levels, creating an AI-based soft sensor applicable to various fruits. This approach enables dynamic decision-making in pricing, logistics, and storage conditions, reducing fruit waste and economic losses. Integrating AI-driven solutions into postharvest handling enhances efficiency and sustainability in fruit distribution and storage, benefiting agricultural and retail industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Time-to-Failure Approach for Estimating the Shelf Life of Freeze-Dried Carotenoid-Enriched Apples: Forecasting the Deterioration of Quality Properties for Different Packaging Types and Storage Conditions Photo- and Thermo-Chemical Properties and Biological Activities of Saclipins, UV-Absorbing Compounds Derived from the Cyanobacterium Aphanothece sacrum Investigating the Effect of Oxygen, Carbon Dioxide, and Ethylene Gases on Khasi Mandarin’ Orange Fruit during Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1