{"title":"海水 Sr、Nd 和 S 同位素对华南早中三叠世火山喷发的响应","authors":"L. J. Shen, Y. J. Zhao, Z. J. Zhu, C. L. Liu","doi":"10.1029/2024GC011552","DOIUrl":null,"url":null,"abstract":"<p>The wide distribution of tuff layers, locally named the “green bean rocks” (GBRs) in the Yangtze Block straddling the Early Middle Triassic marine sequence indicates intense volcanic eruption(s). Sr, Nd, and S isotope compositions and trace elements of marine sediments were analyzed spanning the tuff layers to elucidate their responses to the volcanic eruptions and related environmental changes. The Sr isotope compositions of marine sediments are comparable to those of open seawater during the time interval of ca. 245–248 Ma. Sr and Nd isotope compositions of the samples show synchronous increases in the <sup>87</sup>Sr/<sup>86</sup>Sr ratios and εNd(t) values during the deposition of GBRs. The elevated <sup>87</sup>Sr/<sup>86</sup>Sr ratios and εNd(t) values are proposed to be caused by the input of volcanic tephra and increased influx of weathering product of mafic rocks (most likely the Emeishan flood basalts). The S isotope compositions of sulfates exhibit a negative shift in the GBRs, which could possibly be attributed to greater input of lighter <sup>32</sup>S from weathering products and volcanic eruptions. The variation of Th/U ratios indicate that the GBRs formed in an anoxic environment, resulting from high marine productivity as a consequence of more nutrients from weathering and volcanic materials. The responses of Sr, Nd, and S isotopes to volcanic eruptions during the Early Middle Triassic indicate this event resulted in adverse effects, namely enhanced eutrophication and low O<sub>2</sub> levels, acidic precipitation, toxic components, etc., that could cause ecological destruction both on land and in the sea.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011552","citationCount":"0","resultStr":"{\"title\":\"Responses of Sr, Nd, and S Isotopes of Seawater to the Volcanic Eruptions During the Early Middle Triassic, South China\",\"authors\":\"L. J. Shen, Y. J. Zhao, Z. J. Zhu, C. L. Liu\",\"doi\":\"10.1029/2024GC011552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The wide distribution of tuff layers, locally named the “green bean rocks” (GBRs) in the Yangtze Block straddling the Early Middle Triassic marine sequence indicates intense volcanic eruption(s). Sr, Nd, and S isotope compositions and trace elements of marine sediments were analyzed spanning the tuff layers to elucidate their responses to the volcanic eruptions and related environmental changes. The Sr isotope compositions of marine sediments are comparable to those of open seawater during the time interval of ca. 245–248 Ma. Sr and Nd isotope compositions of the samples show synchronous increases in the <sup>87</sup>Sr/<sup>86</sup>Sr ratios and εNd(t) values during the deposition of GBRs. The elevated <sup>87</sup>Sr/<sup>86</sup>Sr ratios and εNd(t) values are proposed to be caused by the input of volcanic tephra and increased influx of weathering product of mafic rocks (most likely the Emeishan flood basalts). The S isotope compositions of sulfates exhibit a negative shift in the GBRs, which could possibly be attributed to greater input of lighter <sup>32</sup>S from weathering products and volcanic eruptions. The variation of Th/U ratios indicate that the GBRs formed in an anoxic environment, resulting from high marine productivity as a consequence of more nutrients from weathering and volcanic materials. The responses of Sr, Nd, and S isotopes to volcanic eruptions during the Early Middle Triassic indicate this event resulted in adverse effects, namely enhanced eutrophication and low O<sub>2</sub> levels, acidic precipitation, toxic components, etc., that could cause ecological destruction both on land and in the sea.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"25 11\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011552\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011552\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011552","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
横跨早中三叠世海相序列的凝灰岩层(当地命名为 "绿豆岩"(GBRs))在扬子地块的广泛分布表明了强烈的火山喷发。分析了跨越凝灰岩层的海洋沉积物的Sr、Nd和S同位素组成和微量元素,以阐明它们对火山喷发和相关环境变化的响应。海洋沉积物的锶同位素组成与约 245-248 Ma 时间段的开阔海水相当。在GBR沉积过程中,样品的Sr和Nd同位素组成显示出87Sr/86Sr比值和εNd(t)值的同步增长。87Sr/86Sr比值和εNd(t)值升高的原因可能是火山表屑的输入和岩浆岩风化产物(很可能是峨眉山洪积玄武岩)流入的增加。硫酸盐的 S 同位素组成在 GBR 中呈现负偏移,这可能是由于风化产物和火山喷发产生了更多较轻的 32S。Th/U 比值的变化表明,大堡礁是在缺氧环境中形成的,由于风化和火山物质提供了更多的营养物质,海洋生产力较高。Sr、Nd和S同位素对早中三叠世火山爆发的反应表明,火山爆发造成了不利影响,即富营养化加剧和氧气含量低、酸性降水、有毒成分等,可能会对陆地和海洋生态造成破坏。
Responses of Sr, Nd, and S Isotopes of Seawater to the Volcanic Eruptions During the Early Middle Triassic, South China
The wide distribution of tuff layers, locally named the “green bean rocks” (GBRs) in the Yangtze Block straddling the Early Middle Triassic marine sequence indicates intense volcanic eruption(s). Sr, Nd, and S isotope compositions and trace elements of marine sediments were analyzed spanning the tuff layers to elucidate their responses to the volcanic eruptions and related environmental changes. The Sr isotope compositions of marine sediments are comparable to those of open seawater during the time interval of ca. 245–248 Ma. Sr and Nd isotope compositions of the samples show synchronous increases in the 87Sr/86Sr ratios and εNd(t) values during the deposition of GBRs. The elevated 87Sr/86Sr ratios and εNd(t) values are proposed to be caused by the input of volcanic tephra and increased influx of weathering product of mafic rocks (most likely the Emeishan flood basalts). The S isotope compositions of sulfates exhibit a negative shift in the GBRs, which could possibly be attributed to greater input of lighter 32S from weathering products and volcanic eruptions. The variation of Th/U ratios indicate that the GBRs formed in an anoxic environment, resulting from high marine productivity as a consequence of more nutrients from weathering and volcanic materials. The responses of Sr, Nd, and S isotopes to volcanic eruptions during the Early Middle Triassic indicate this event resulted in adverse effects, namely enhanced eutrophication and low O2 levels, acidic precipitation, toxic components, etc., that could cause ecological destruction both on land and in the sea.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.