Rebecca M. Neeser, Prof. Bruno Correia, Prof. Philippe Schwaller
{"title":"FSscore:基于机器学习的个性化合成可行性评分","authors":"Rebecca M. Neeser, Prof. Bruno Correia, Prof. Philippe Schwaller","doi":"10.1002/cmtd.202400024","DOIUrl":null,"url":null,"abstract":"<p>Determining whether a molecule can be synthesized is crucial in chemistry and drug discovery, as it guides experimental prioritization and molecule ranking in <i>de novo</i> design tasks. Existing scoring approaches to assess synthetic feasibility struggle to extrapolate to new chemical spaces or fail to discriminate based on subtle differences such as chirality. This work addresses these limitations by introducing the Focused Synthesizability score (FSscore), which uses machine learning to rank structures based on their relative ease of synthesis. First, a baseline trained on an extensive set of reactant-product pairs is established, which is then refined with expert human feedback tailored to specific chemical spaces. This targeted fine-tuning improves performance on these chemical scopes, enabling more accurate differentiation between molecules that are hard and easy to synthesize. The FSscore showcases how a human-in-the-loop framework can be utilized to optimize the assessment of synthetic feasibility for various chemical applications.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"4 11","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202400024","citationCount":"0","resultStr":"{\"title\":\"FSscore: A Personalized Machine Learning-Based Synthetic Feasibility Score\",\"authors\":\"Rebecca M. Neeser, Prof. Bruno Correia, Prof. Philippe Schwaller\",\"doi\":\"10.1002/cmtd.202400024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Determining whether a molecule can be synthesized is crucial in chemistry and drug discovery, as it guides experimental prioritization and molecule ranking in <i>de novo</i> design tasks. Existing scoring approaches to assess synthetic feasibility struggle to extrapolate to new chemical spaces or fail to discriminate based on subtle differences such as chirality. This work addresses these limitations by introducing the Focused Synthesizability score (FSscore), which uses machine learning to rank structures based on their relative ease of synthesis. First, a baseline trained on an extensive set of reactant-product pairs is established, which is then refined with expert human feedback tailored to specific chemical spaces. This targeted fine-tuning improves performance on these chemical scopes, enabling more accurate differentiation between molecules that are hard and easy to synthesize. The FSscore showcases how a human-in-the-loop framework can be utilized to optimize the assessment of synthetic feasibility for various chemical applications.</p>\",\"PeriodicalId\":72562,\"journal\":{\"name\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"volume\":\"4 11\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202400024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202400024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202400024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
FSscore: A Personalized Machine Learning-Based Synthetic Feasibility Score
Determining whether a molecule can be synthesized is crucial in chemistry and drug discovery, as it guides experimental prioritization and molecule ranking in de novo design tasks. Existing scoring approaches to assess synthetic feasibility struggle to extrapolate to new chemical spaces or fail to discriminate based on subtle differences such as chirality. This work addresses these limitations by introducing the Focused Synthesizability score (FSscore), which uses machine learning to rank structures based on their relative ease of synthesis. First, a baseline trained on an extensive set of reactant-product pairs is established, which is then refined with expert human feedback tailored to specific chemical spaces. This targeted fine-tuning improves performance on these chemical scopes, enabling more accurate differentiation between molecules that are hard and easy to synthesize. The FSscore showcases how a human-in-the-loop framework can be utilized to optimize the assessment of synthetic feasibility for various chemical applications.