Anthony Choi, David M. Heard, Calum S. Haydon, Alastair J. J. Lennox
{"title":"Open-ESyn:用于扩展电合成功能和再现性的三维打印工具包","authors":"Anthony Choi, David M. Heard, Calum S. Haydon, Alastair J. J. Lennox","doi":"10.1002/celc.202400454","DOIUrl":null,"url":null,"abstract":"<p>Electrosynthetic reactions are performed in either custom-made reactors that are developed and machined in-house or commercially available systems that offer good reproducibility but come at a high cost. To bridge this divide between customizability and reproducibility, we have developed the Open-ESyn, which is a suite of 3D-printed components compatible with the popular ElectraSyn. This collection of parts increases the electrosynthesis that can be performed with the ElectraSyn, expanding, for example, the scale, temperature and the type of electrodes that can be used. The standardized reactor environment can be inexpensively recreated, thereby maintaining the reproducibility of the ElectraSyn ecosystem.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 21","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400454","citationCount":"0","resultStr":"{\"title\":\"Open-ESyn: A 3D-Printed Toolkit for Expanded ElectraSyn Functionality and Reproducibility for Electrosynthesis\",\"authors\":\"Anthony Choi, David M. Heard, Calum S. Haydon, Alastair J. J. Lennox\",\"doi\":\"10.1002/celc.202400454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrosynthetic reactions are performed in either custom-made reactors that are developed and machined in-house or commercially available systems that offer good reproducibility but come at a high cost. To bridge this divide between customizability and reproducibility, we have developed the Open-ESyn, which is a suite of 3D-printed components compatible with the popular ElectraSyn. This collection of parts increases the electrosynthesis that can be performed with the ElectraSyn, expanding, for example, the scale, temperature and the type of electrodes that can be used. The standardized reactor environment can be inexpensively recreated, thereby maintaining the reproducibility of the ElectraSyn ecosystem.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 21\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400454\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400454\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400454","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
电合成反应要么在内部开发和加工的定制反应器中进行,要么在可提供良好可重复性但成本高昂的商用系统中进行。为了弥合可定制性和可重复性之间的鸿沟,我们开发了 Open-ESyn,这是一套与流行的 ElectraSyn 兼容的 3D 打印组件。这一系列部件增加了使用 ElectraSyn 进行电合成的可能性,例如,扩大了可使用的规模、温度和电极类型。标准化的反应器环境可以廉价地重新创建,从而保持 ElectraSyn 生态系统的可重复性。
Open-ESyn: A 3D-Printed Toolkit for Expanded ElectraSyn Functionality and Reproducibility for Electrosynthesis
Electrosynthetic reactions are performed in either custom-made reactors that are developed and machined in-house or commercially available systems that offer good reproducibility but come at a high cost. To bridge this divide between customizability and reproducibility, we have developed the Open-ESyn, which is a suite of 3D-printed components compatible with the popular ElectraSyn. This collection of parts increases the electrosynthesis that can be performed with the ElectraSyn, expanding, for example, the scale, temperature and the type of electrodes that can be used. The standardized reactor environment can be inexpensively recreated, thereby maintaining the reproducibility of the ElectraSyn ecosystem.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.