扩展球形扩散理论:球形生物样品中扩散分子的电化学发光成像分析。

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-11-18 DOI:10.1021/acs.analchem.4c03167
Kosuke Ino, Miyu Mashiko, Yusuke Kanno, Yeyi Tang, Shuzo Masui, Takasi Nisisako, Kaoru Hiramoto, Hiroya Abe, Hitoshi Shiku
{"title":"扩展球形扩散理论:球形生物样品中扩散分子的电化学发光成像分析。","authors":"Kosuke Ino, Miyu Mashiko, Yusuke Kanno, Yeyi Tang, Shuzo Masui, Takasi Nisisako, Kaoru Hiramoto, Hiroya Abe, Hitoshi Shiku","doi":"10.1021/acs.analchem.4c03167","DOIUrl":null,"url":null,"abstract":"<p><p>Spherical biosamples such as immunobeads, cells, and cell aggregates have been widely used in bioapplications. The bioactivity of individual spherical biosamples in highly sensitive assays and individual analyses must be evaluated in a high-throughput manner. Electrochemiluminescence (ECL) imaging was recently proposed for the high-throughput analysis of diffusive molecules from spherical biosamples. ECL imaging involves the placing of spherical biosamples on a flat electrode filled with a solution. The biosamples produce (or consume) biological/chemical molecules such as H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub>, which diffuse to form a concentration gradient at the electrode. The ECL signals from the molecules are then measured to obtain the concentration profile, which allows the flux to be estimated, from which their bioactivities can be successfully calculated. However, no studies on theoretical approaches for spherical biosamples on flat surfaces have been conducted using ECL imaging. Therefore, this paper presents a novel spherical diffusion theory for spherical biosamples on a flat surface, which is based on the common spherical diffusion theory and was designated as the extended spherical diffusion theory. First, the concepts behind this theory are discussed. The theory is then validated by comparison with a simulated analysis. The resulting equation successfully expresses the concentration profile for the entire area. The glucose oxidase activity in the hydrogel beads is subsequently visualized using ECL imaging, and the enzymatic product flux is calculated using the proof-of-concept theory. Finally, a time-dependent simulation is conducted to fill the gap between the theoretical and experimental data. This paper presents novel guidelines for this analysis.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Spherical Diffusion Theory: Electrochemiluminescence Imaging Analysis of Diffusive Molecules from Spherical Biosamples.\",\"authors\":\"Kosuke Ino, Miyu Mashiko, Yusuke Kanno, Yeyi Tang, Shuzo Masui, Takasi Nisisako, Kaoru Hiramoto, Hiroya Abe, Hitoshi Shiku\",\"doi\":\"10.1021/acs.analchem.4c03167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spherical biosamples such as immunobeads, cells, and cell aggregates have been widely used in bioapplications. The bioactivity of individual spherical biosamples in highly sensitive assays and individual analyses must be evaluated in a high-throughput manner. Electrochemiluminescence (ECL) imaging was recently proposed for the high-throughput analysis of diffusive molecules from spherical biosamples. ECL imaging involves the placing of spherical biosamples on a flat electrode filled with a solution. The biosamples produce (or consume) biological/chemical molecules such as H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub>, which diffuse to form a concentration gradient at the electrode. The ECL signals from the molecules are then measured to obtain the concentration profile, which allows the flux to be estimated, from which their bioactivities can be successfully calculated. However, no studies on theoretical approaches for spherical biosamples on flat surfaces have been conducted using ECL imaging. Therefore, this paper presents a novel spherical diffusion theory for spherical biosamples on a flat surface, which is based on the common spherical diffusion theory and was designated as the extended spherical diffusion theory. First, the concepts behind this theory are discussed. The theory is then validated by comparison with a simulated analysis. The resulting equation successfully expresses the concentration profile for the entire area. The glucose oxidase activity in the hydrogel beads is subsequently visualized using ECL imaging, and the enzymatic product flux is calculated using the proof-of-concept theory. Finally, a time-dependent simulation is conducted to fill the gap between the theoretical and experimental data. This paper presents novel guidelines for this analysis.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c03167\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c03167","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

球形生物样品(如免疫球蛋白、细胞和细胞聚集体)已被广泛用于生物应用中。在高灵敏度检测和单项分析中,必须以高通量方式评估单个球形生物样品的生物活性。最近,有人提出用电化学发光(ECL)成像技术对球形生物样品中的扩散分子进行高通量分析。ECL 成像技术是将球形生物样品置于充满溶液的平面电极上。生物样品产生(或消耗)H2O2 和 O2 等生物/化学分子,这些分子扩散后在电极上形成浓度梯度。然后测量来自分子的 ECL 信号,以获得浓度曲线,从而估算通量,并据此成功计算出其生物活性。然而,目前还没有利用 ECL 成像对平面上的球形生物样品进行理论研究。因此,本文在普通球形扩散理论的基础上,提出了一种适用于平面上球形生物样品的新型球形扩散理论,并将其命名为扩展球形扩散理论。首先,讨论了该理论背后的概念。然后,通过与模拟分析的对比验证了该理论。由此得出的方程成功地表达了整个区域的浓度曲线。随后,利用 ECL 成像对水凝胶珠中的葡萄糖氧化酶活性进行了可视化,并利用概念验证理论计算了酶产物通量。最后,进行了随时间变化的模拟,以填补理论数据与实验数据之间的差距。本文为这一分析提出了新的指导原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extended Spherical Diffusion Theory: Electrochemiluminescence Imaging Analysis of Diffusive Molecules from Spherical Biosamples.

Spherical biosamples such as immunobeads, cells, and cell aggregates have been widely used in bioapplications. The bioactivity of individual spherical biosamples in highly sensitive assays and individual analyses must be evaluated in a high-throughput manner. Electrochemiluminescence (ECL) imaging was recently proposed for the high-throughput analysis of diffusive molecules from spherical biosamples. ECL imaging involves the placing of spherical biosamples on a flat electrode filled with a solution. The biosamples produce (or consume) biological/chemical molecules such as H2O2 and O2, which diffuse to form a concentration gradient at the electrode. The ECL signals from the molecules are then measured to obtain the concentration profile, which allows the flux to be estimated, from which their bioactivities can be successfully calculated. However, no studies on theoretical approaches for spherical biosamples on flat surfaces have been conducted using ECL imaging. Therefore, this paper presents a novel spherical diffusion theory for spherical biosamples on a flat surface, which is based on the common spherical diffusion theory and was designated as the extended spherical diffusion theory. First, the concepts behind this theory are discussed. The theory is then validated by comparison with a simulated analysis. The resulting equation successfully expresses the concentration profile for the entire area. The glucose oxidase activity in the hydrogel beads is subsequently visualized using ECL imaging, and the enzymatic product flux is calculated using the proof-of-concept theory. Finally, a time-dependent simulation is conducted to fill the gap between the theoretical and experimental data. This paper presents novel guidelines for this analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Mineralogical Analysis of Solid-Sample Flame Emission Spectra by Machine Learning Unraveling O-Glycan Diversity of Mucins: Insights from SmE Mucinase and Ultraviolet Photodissociation Mass Spectrometry A Single-Tube, Single-Enzyme Clustered Regularly Interspaced Short Palindromic Repeats System (UNISON) with Internal Controls for Accurate Nucleic Acid Detection External Cavity Quantum Cascade Laser Vibrational Circular Dichroism Spectroscopy for Fast and Sensitive Analysis of Proteins at Low Concentrations Utilizing DNA Logic Device for Precise Detection of Circulating Tumor Cells via High Catalytic Activity Au Nanoparticle Anchoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1