氮掺杂石墨烯支撑的氮氧化钨纳米粒子作为先进锂硫电池的高效双向多硫化物转换器。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-18 DOI:10.1021/acs.nanolett.4c04791
Lulu Suo, Lei Feng, Juan Wang, Miaomiao Xing, Shuhua Lv, Hongyu Mou, Xing Gao, Deliang Zhang, Jibin Song
{"title":"氮掺杂石墨烯支撑的氮氧化钨纳米粒子作为先进锂硫电池的高效双向多硫化物转换器。","authors":"Lulu Suo, Lei Feng, Juan Wang, Miaomiao Xing, Shuhua Lv, Hongyu Mou, Xing Gao, Deliang Zhang, Jibin Song","doi":"10.1021/acs.nanolett.4c04791","DOIUrl":null,"url":null,"abstract":"<p><p>Catalytic materials are considered pivotal in addressing the sluggish kinetics and shuttle effect in lithium-sulfur batteries (LSBs). However, effectively harnessing the utilization rate of active sites within catalytic materials remains a pivotal challenge. In this study, a novel conductive nitrogen-doped graphene-loaded tungsten oxynitride nanoparticle (WNO/NG) with abundant active sites is prepared through a polymer-assisted templating method for serving as a sulfur host. Electrochemical analysis coupled with <i>in situ</i> XRD confirm the dual-directional electrocatalytic behavior of WNO/NG for accelerating the conversion of lithium polysulfide (LiPSs). Theoretical calculations demonstrate that the intrinsic mechanism underlying the performance enhancement is attributed to the high inherent conductivity of WNO/NG and the efficient interface charge transfer with LiPSs. The assembled 500 mAh pouch cell delivers a 97% capacity retention after 25 cycles. This strategy provides valuable insights for designing catalytic materials with abundant activity sites and sheds light on the mechanisms of catalytic enhancement in Li-S chemistry.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen-Doped Graphene-Supported Tungsten Oxynitride Nanoparticles as an Efficient Bidirectional Polysulfide Convertor for Advanced Lithium-Sulfur Batteries.\",\"authors\":\"Lulu Suo, Lei Feng, Juan Wang, Miaomiao Xing, Shuhua Lv, Hongyu Mou, Xing Gao, Deliang Zhang, Jibin Song\",\"doi\":\"10.1021/acs.nanolett.4c04791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Catalytic materials are considered pivotal in addressing the sluggish kinetics and shuttle effect in lithium-sulfur batteries (LSBs). However, effectively harnessing the utilization rate of active sites within catalytic materials remains a pivotal challenge. In this study, a novel conductive nitrogen-doped graphene-loaded tungsten oxynitride nanoparticle (WNO/NG) with abundant active sites is prepared through a polymer-assisted templating method for serving as a sulfur host. Electrochemical analysis coupled with <i>in situ</i> XRD confirm the dual-directional electrocatalytic behavior of WNO/NG for accelerating the conversion of lithium polysulfide (LiPSs). Theoretical calculations demonstrate that the intrinsic mechanism underlying the performance enhancement is attributed to the high inherent conductivity of WNO/NG and the efficient interface charge transfer with LiPSs. The assembled 500 mAh pouch cell delivers a 97% capacity retention after 25 cycles. This strategy provides valuable insights for designing catalytic materials with abundant activity sites and sheds light on the mechanisms of catalytic enhancement in Li-S chemistry.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c04791\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04791","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

催化材料被认为是解决锂硫电池(LSBs)缓慢动力学和穿梭效应的关键。然而,如何有效利用催化材料中活性位点的利用率仍是一项关键挑战。本研究通过聚合物辅助模板法制备了具有丰富活性位点的新型导电氮掺杂石墨烯负载氧化钨纳米粒子(WNO/NG),并将其用作硫宿主。电化学分析和原位 XRD 证实了 WNO/NG 在加速多硫化锂(LiPSs)转化方面的双向电催化行为。理论计算表明,性能增强的内在机制归因于 WNO/NG 的高固有电导率以及与 LiPSs 之间高效的界面电荷转移。组装好的 500 mAh 袋装电池在循环 25 次后可保持 97% 的容量。这一策略为设计具有丰富活性位点的催化材料提供了宝贵的见解,并揭示了锂-S 化学催化增强的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nitrogen-Doped Graphene-Supported Tungsten Oxynitride Nanoparticles as an Efficient Bidirectional Polysulfide Convertor for Advanced Lithium-Sulfur Batteries.

Catalytic materials are considered pivotal in addressing the sluggish kinetics and shuttle effect in lithium-sulfur batteries (LSBs). However, effectively harnessing the utilization rate of active sites within catalytic materials remains a pivotal challenge. In this study, a novel conductive nitrogen-doped graphene-loaded tungsten oxynitride nanoparticle (WNO/NG) with abundant active sites is prepared through a polymer-assisted templating method for serving as a sulfur host. Electrochemical analysis coupled with in situ XRD confirm the dual-directional electrocatalytic behavior of WNO/NG for accelerating the conversion of lithium polysulfide (LiPSs). Theoretical calculations demonstrate that the intrinsic mechanism underlying the performance enhancement is attributed to the high inherent conductivity of WNO/NG and the efficient interface charge transfer with LiPSs. The assembled 500 mAh pouch cell delivers a 97% capacity retention after 25 cycles. This strategy provides valuable insights for designing catalytic materials with abundant activity sites and sheds light on the mechanisms of catalytic enhancement in Li-S chemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Observation of Linear Resistance at Low Temperatures in Hole-Doped Degenerate Spin-Valley Semiconductors Large-Scale, High-Density MicroLED Array-Based Optogenetic Device for Neural Stimulation and Recording Unleashing Giant Förster Resonance Energy Transfer by Bound State in the Continuum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1