影响磺胺类抗生素电氧化处理的线性取代基的新见解:利用密度泛函理论将动力学、途径、毒性和活性物种联系起来。

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Pub Date : 2024-11-16 DOI:10.1016/j.envres.2024.120273
Tianzi Yang , Qilin Wang , Yuan Tao , Yuanyuan Sun , Jichun Wu
{"title":"影响磺胺类抗生素电氧化处理的线性取代基的新见解:利用密度泛函理论将动力学、途径、毒性和活性物种联系起来。","authors":"Tianzi Yang ,&nbsp;Qilin Wang ,&nbsp;Yuan Tao ,&nbsp;Yuanyuan Sun ,&nbsp;Jichun Wu","doi":"10.1016/j.envres.2024.120273","DOIUrl":null,"url":null,"abstract":"<div><div>Linear substituents, despite their simpler structures compared to heterocyclic ones, exhibit distinct chemical behaviors. Using sulfacetamide (SAM) and sulfaguanidine (SGD) as model compounds, we assessed the impact of these substituents on degradation efficiency, active species identification, reaction pathways, and intermediate toxicity during electrooxidation in water. Through density functional theory, we elucidated the mechanisms, focusing on electronic structural changes and interactions with active species. Notably, the acetyl group in SAM (0.1016) acquired more electrons than the guanidyl group in SGD (0.0281), resulting in SAM having a higher free energy change (<span><math><mrow><mi>Δ</mi><mi>G</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>06</mn><mspace></mspace><mtext>kcal/mol</mtext></mrow></math></span>) compared to SGD (<span><math><mrow><mi>Δ</mi><mi>G</mi><mo>=</mo><mn>9</mn><mo>.</mo><mn>59</mn><mspace></mspace><mtext>kcal/mol</mtext></mrow></math></span>). This difference makes SAM less likely to undergo direct electron transfer and less reactive towards hydroxyl radical addition, leading to slower degradation rates. The applied potential notably increased SAM’s sensitivity to hydroxyl radicals. Both the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were contributed by the parent fragment, facilitating electrophilic reactions mainly on the aniline part. Seventeen intermediate products and three major transformation pathways were identified, emphasizing aniline group destruction before discharge. This research enhances understanding of the degradation and environmental fate of sulfonamides, providing valuable insights for optimizing pollutant degradation and discharge reduction.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"264 ","pages":"Article 120273"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New insight into linear substituents influencing electrooxidation treatment of sulfonamide antibiotics: Linking kinetics, pathways, toxicity, and active species with density functional theory\",\"authors\":\"Tianzi Yang ,&nbsp;Qilin Wang ,&nbsp;Yuan Tao ,&nbsp;Yuanyuan Sun ,&nbsp;Jichun Wu\",\"doi\":\"10.1016/j.envres.2024.120273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Linear substituents, despite their simpler structures compared to heterocyclic ones, exhibit distinct chemical behaviors. Using sulfacetamide (SAM) and sulfaguanidine (SGD) as model compounds, we assessed the impact of these substituents on degradation efficiency, active species identification, reaction pathways, and intermediate toxicity during electrooxidation in water. Through density functional theory, we elucidated the mechanisms, focusing on electronic structural changes and interactions with active species. Notably, the acetyl group in SAM (0.1016) acquired more electrons than the guanidyl group in SGD (0.0281), resulting in SAM having a higher free energy change (<span><math><mrow><mi>Δ</mi><mi>G</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>06</mn><mspace></mspace><mtext>kcal/mol</mtext></mrow></math></span>) compared to SGD (<span><math><mrow><mi>Δ</mi><mi>G</mi><mo>=</mo><mn>9</mn><mo>.</mo><mn>59</mn><mspace></mspace><mtext>kcal/mol</mtext></mrow></math></span>). This difference makes SAM less likely to undergo direct electron transfer and less reactive towards hydroxyl radical addition, leading to slower degradation rates. The applied potential notably increased SAM’s sensitivity to hydroxyl radicals. Both the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were contributed by the parent fragment, facilitating electrophilic reactions mainly on the aniline part. Seventeen intermediate products and three major transformation pathways were identified, emphasizing aniline group destruction before discharge. This research enhances understanding of the degradation and environmental fate of sulfonamides, providing valuable insights for optimizing pollutant degradation and discharge reduction.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"264 \",\"pages\":\"Article 120273\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935124021807\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935124021807","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

尽管线性取代基与杂环取代基相比结构更简单,但却表现出不同的化学行为。我们以磺乙酰胺(SAM)和磺胺脒(SGD)为模型化合物,评估了这些取代基在水中电氧化过程中对降解效率、活性物种识别、反应途径和中间体毒性的影响。通过密度泛函理论,我们阐明了其机理,重点是电子结构变化以及与活性物种的相互作用。值得注意的是,与 SGD(ΔG=9.59kcal/mol)相比,SAM(0.1016)中的乙酰基比 SGD(0.0281)中的鸟苷基获得了更多的电子,从而导致 SAM 具有更高的自由能变化(ΔG=15.06kcal/mol)。这种差异使得 SAM 不容易发生直接电子转移,对羟基自由基加成的反应性也较低,从而导致降解速度减慢。所施加的电势明显增加了 SAM 对羟自由基的敏感性。最高占位分子轨道(HOMO)和最低未占位分子轨道(LUMO)均由母体片段贡献,主要促进了苯胺部分的亲电反应。研究确定了 17 种中间产物和三种主要转化途径,强调了苯胺基团在放电前的破坏作用。这项研究加深了人们对磺胺类化合物的降解和环境归宿的了解,为优化污染物降解和减少排放提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New insight into linear substituents influencing electrooxidation treatment of sulfonamide antibiotics: Linking kinetics, pathways, toxicity, and active species with density functional theory
Linear substituents, despite their simpler structures compared to heterocyclic ones, exhibit distinct chemical behaviors. Using sulfacetamide (SAM) and sulfaguanidine (SGD) as model compounds, we assessed the impact of these substituents on degradation efficiency, active species identification, reaction pathways, and intermediate toxicity during electrooxidation in water. Through density functional theory, we elucidated the mechanisms, focusing on electronic structural changes and interactions with active species. Notably, the acetyl group in SAM (0.1016) acquired more electrons than the guanidyl group in SGD (0.0281), resulting in SAM having a higher free energy change (ΔG=15.06kcal/mol) compared to SGD (ΔG=9.59kcal/mol). This difference makes SAM less likely to undergo direct electron transfer and less reactive towards hydroxyl radical addition, leading to slower degradation rates. The applied potential notably increased SAM’s sensitivity to hydroxyl radicals. Both the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were contributed by the parent fragment, facilitating electrophilic reactions mainly on the aniline part. Seventeen intermediate products and three major transformation pathways were identified, emphasizing aniline group destruction before discharge. This research enhances understanding of the degradation and environmental fate of sulfonamides, providing valuable insights for optimizing pollutant degradation and discharge reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
期刊最新文献
Expression of Concern: "Anti-diabetic efficacy and selective inhibition of methyl glyoxal, intervention with biogenic Zinc oxide nanoparticle" [Environ. Res., 216 (2023) 114475]. Expression of Concern: "Aristolochia bracteolata flower extract based phytosynthesis and characterization of AgNPs: Antimicrobial, antidiabetic, and antioxidant activities potential assessment" [Environ. Res., 251 (2024) 118729]. Expression of Concern: "Assessment of hepatotoxicity and nephrotoxicity in Cirrhinus mrigala induced by trypan blue - An azo dye" [Environ. Res., 215 (2022) 114120]. Expression of Concern: "Bio-functionalized copper oxide/chitosan nanocomposite using Sida cordifolia and their efficient properties of antibacterial, anticancer activity against on breast and lung cancer cell lines" [Environ. Res., 218 (2023) 114986]. Expression of Concern: "Catalytic pyrolysis of fish waste oil using ZSM-5 catalyst for the production of renewable biofuel" [Environ. Res., 258 (2024) 119486].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1