Cristhian A Gutierrez-Huerta, Giovanni Quiroz-Delfi, Fathima Dhilhani Mohammed Faleel, Andreas Beyer
{"title":"内皮功能受损导致心脏功能障碍--线粒体动力学的作用。","authors":"Cristhian A Gutierrez-Huerta, Giovanni Quiroz-Delfi, Fathima Dhilhani Mohammed Faleel, Andreas Beyer","doi":"10.1152/ajpheart.00531.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The endothelial microvasculature is essential for the regulation of vasodilation and vasoconstriction, and improved functioning of the endothelium is linked to improved outcomes for individuals with coronary artery disease (CAD). People with endothelial dysfunction exhibit a loss of NO-mediated vasodilation, achieving vasodilation instead through mitochondria-derived H<sub>2</sub>O<sub>2</sub>. Mitochondrial dynamics is an important autoregulatory mechanism that contributes to mitochondrial and endothelial homeostasis and plays a role in formation of reactive oxygen species (ROS), including H<sub>2</sub>O<sub>2</sub>. Dysregulation of mitochondrial dynamics leads to increased ROS production, decreased ATP production, impaired metabolism, activation of pathological signal transduction, impaired calcium sensing, and inflammation. We hypothesize that dysregulation of endothelial mitochondrial dynamics plays a crucial role in the endothelial microvascular dysfunction seen in individuals with CAD. Therefore, proper regulation of endothelial mitochondrial dynamics may be a suitable treatment for individuals with endothelial microvascular dysfunction and we furthermore postulate that improving this microvascular dysfunction will directly improve outcomes for those with CAD.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impaired endothelial function contributes to cardiac dysfunction - role of mitochondrial dynamics.\",\"authors\":\"Cristhian A Gutierrez-Huerta, Giovanni Quiroz-Delfi, Fathima Dhilhani Mohammed Faleel, Andreas Beyer\",\"doi\":\"10.1152/ajpheart.00531.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The endothelial microvasculature is essential for the regulation of vasodilation and vasoconstriction, and improved functioning of the endothelium is linked to improved outcomes for individuals with coronary artery disease (CAD). People with endothelial dysfunction exhibit a loss of NO-mediated vasodilation, achieving vasodilation instead through mitochondria-derived H<sub>2</sub>O<sub>2</sub>. Mitochondrial dynamics is an important autoregulatory mechanism that contributes to mitochondrial and endothelial homeostasis and plays a role in formation of reactive oxygen species (ROS), including H<sub>2</sub>O<sub>2</sub>. Dysregulation of mitochondrial dynamics leads to increased ROS production, decreased ATP production, impaired metabolism, activation of pathological signal transduction, impaired calcium sensing, and inflammation. We hypothesize that dysregulation of endothelial mitochondrial dynamics plays a crucial role in the endothelial microvascular dysfunction seen in individuals with CAD. Therefore, proper regulation of endothelial mitochondrial dynamics may be a suitable treatment for individuals with endothelial microvascular dysfunction and we furthermore postulate that improving this microvascular dysfunction will directly improve outcomes for those with CAD.</p>\",\"PeriodicalId\":7692,\"journal\":{\"name\":\"American journal of physiology. Heart and circulatory physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Heart and circulatory physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpheart.00531.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00531.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Impaired endothelial function contributes to cardiac dysfunction - role of mitochondrial dynamics.
The endothelial microvasculature is essential for the regulation of vasodilation and vasoconstriction, and improved functioning of the endothelium is linked to improved outcomes for individuals with coronary artery disease (CAD). People with endothelial dysfunction exhibit a loss of NO-mediated vasodilation, achieving vasodilation instead through mitochondria-derived H2O2. Mitochondrial dynamics is an important autoregulatory mechanism that contributes to mitochondrial and endothelial homeostasis and plays a role in formation of reactive oxygen species (ROS), including H2O2. Dysregulation of mitochondrial dynamics leads to increased ROS production, decreased ATP production, impaired metabolism, activation of pathological signal transduction, impaired calcium sensing, and inflammation. We hypothesize that dysregulation of endothelial mitochondrial dynamics plays a crucial role in the endothelial microvascular dysfunction seen in individuals with CAD. Therefore, proper regulation of endothelial mitochondrial dynamics may be a suitable treatment for individuals with endothelial microvascular dysfunction and we furthermore postulate that improving this microvascular dysfunction will directly improve outcomes for those with CAD.
期刊介绍:
The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.