Seung Chul Shin, Sanghee Kim, Han-Woo Kim, Jun Hyuck Lee, Jin-Hyoung Kim
{"title":"南极冰鱼的基因缺失:模仿范可尼贫血症的进化适应?","authors":"Seung Chul Shin, Sanghee Kim, Han-Woo Kim, Jun Hyuck Lee, Jin-Hyoung Kim","doi":"10.1186/s12864-024-11028-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The white-blooded Antarctic icefishes is a representative organism that survive under the stenothermal conditions of the Southern Ocean without the hemoglobin genes. To compensate for inefficient oxygen transport, distinct features such as increased heart size, greater blood volume, and reduced hematocrit density enhance the amount of dissolved oxygen and the velocity of blood flow.</p><p><strong>Results: </strong>Here, we investigated these unique characteristics by comparing high-quality genomic data between white-blooded and red-blooded fishes and identified the loss of FAAP20, which is implicated in anemia. Although the gene region containing FAAP20 is conserved in notothenioids as shown through collinear analysis, only remnants of FAAP20 persist in several icefish species. Additionally, we observed the loss of SOAT1, which plays a pivotal role in cholesterol metabolism, providing a clue for further investigations into the unique mitochondrial form of the icefish.</p><p><strong>Conclusions: </strong>The loss of FAAP20, which is known to reduce erythrocyte counts under stress conditions in mice and humans, may provide a clue to understanding the genomic characteristics related to oxygen supply, such as low hematocrit, in Antarctic icefishes.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"25 1","pages":"1102"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575085/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gene loss in Antarctic icefish: evolutionary adaptations mimicking Fanconi Anemia?\",\"authors\":\"Seung Chul Shin, Sanghee Kim, Han-Woo Kim, Jun Hyuck Lee, Jin-Hyoung Kim\",\"doi\":\"10.1186/s12864-024-11028-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The white-blooded Antarctic icefishes is a representative organism that survive under the stenothermal conditions of the Southern Ocean without the hemoglobin genes. To compensate for inefficient oxygen transport, distinct features such as increased heart size, greater blood volume, and reduced hematocrit density enhance the amount of dissolved oxygen and the velocity of blood flow.</p><p><strong>Results: </strong>Here, we investigated these unique characteristics by comparing high-quality genomic data between white-blooded and red-blooded fishes and identified the loss of FAAP20, which is implicated in anemia. Although the gene region containing FAAP20 is conserved in notothenioids as shown through collinear analysis, only remnants of FAAP20 persist in several icefish species. Additionally, we observed the loss of SOAT1, which plays a pivotal role in cholesterol metabolism, providing a clue for further investigations into the unique mitochondrial form of the icefish.</p><p><strong>Conclusions: </strong>The loss of FAAP20, which is known to reduce erythrocyte counts under stress conditions in mice and humans, may provide a clue to understanding the genomic characteristics related to oxygen supply, such as low hematocrit, in Antarctic icefishes.</p>\",\"PeriodicalId\":9030,\"journal\":{\"name\":\"BMC Genomics\",\"volume\":\"25 1\",\"pages\":\"1102\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575085/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12864-024-11028-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-11028-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Gene loss in Antarctic icefish: evolutionary adaptations mimicking Fanconi Anemia?
Background: The white-blooded Antarctic icefishes is a representative organism that survive under the stenothermal conditions of the Southern Ocean without the hemoglobin genes. To compensate for inefficient oxygen transport, distinct features such as increased heart size, greater blood volume, and reduced hematocrit density enhance the amount of dissolved oxygen and the velocity of blood flow.
Results: Here, we investigated these unique characteristics by comparing high-quality genomic data between white-blooded and red-blooded fishes and identified the loss of FAAP20, which is implicated in anemia. Although the gene region containing FAAP20 is conserved in notothenioids as shown through collinear analysis, only remnants of FAAP20 persist in several icefish species. Additionally, we observed the loss of SOAT1, which plays a pivotal role in cholesterol metabolism, providing a clue for further investigations into the unique mitochondrial form of the icefish.
Conclusions: The loss of FAAP20, which is known to reduce erythrocyte counts under stress conditions in mice and humans, may provide a clue to understanding the genomic characteristics related to oxygen supply, such as low hematocrit, in Antarctic icefishes.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.