达帕格列净通过减少Mettl3诱导的Marcks mRNA m6A修饰抑制高血糖诱导的增殖、氧化应激和纤维化

IF 3.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular Toxicology Pub Date : 2024-11-19 DOI:10.1007/s12012-024-09945-3
Binhao Shi, Jianfei Wang, Jing Zhang, Ji Li, Yancheng Hao, Xianhe Lin, Ren Zhao
{"title":"达帕格列净通过减少Mettl3诱导的Marcks mRNA m6A修饰抑制高血糖诱导的增殖、氧化应激和纤维化","authors":"Binhao Shi, Jianfei Wang, Jing Zhang, Ji Li, Yancheng Hao, Xianhe Lin, Ren Zhao","doi":"10.1007/s12012-024-09945-3","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic cardiomyopathy (DCM) is a common and severe complication of Diabetes mellitus (DM). Dapagliflozin (DAPA) is an oral anti-diabetic drug worldwide for the treatment of type 2 DM. However, the action and mechanism of DAPA in cardiac fibrosis during DCM remain vague. Primary cardiac fibroblasts (CFs) were incubated with high glucose (HG) in vitro. Cell proliferation was detected by MTT and EdU assays. Oxidative stress was evaluated by determining the production of reactive oxygen species and malondialdehyde. Cell fibrosis was assessed by detecting fibrosis-related proteins by western blotting. Levels of Mettl3 (Methyltransferase 3) and Marcks (myristoylated alanine-rich C kinase substrate) were measured using qRT-PCR and western blotting. The m6A modification profile was determined by methylated RNA immunoprecipitation assay and the interaction between Mettl3 and Marcks was verified using dual-luciferase reporter and RIP assays. DAPA treatment alleviated HG-induced proliferation, oxidative stress, and fibrosis in CFs. HG promoted the expression of Mettl3 in CFs. Knockdown of Mettl3 reversed HG-induced proliferation, oxidative stress, and fibrosis in CFs; moreover, forced expression of Mettl3 abolished the protective effects of DAPA on CFs under HG condition. Mechanistically, Mettl3 interacted with Marcks in CFs and induced Marcks mRNA m6A modification. HG induced high expression of Marcks in CFs. The overexpression of Marcks could counteract DAPA or Mettl3 knockdown-evoked inhibitory effects on CF proliferation, oxidative stress, and fibrosis under HG condition. Dapagliflozin suppressed HG-induced proliferation, oxidative stress, and fibrosis by reducing Mettl3-induced m6A modification in Marcks mRNA.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dapagliflozin Suppresses High Glucose-Induced Proliferation, Oxidative Stress, and Fibrosis by Reducing Mettl3-Induced m6A Modification in Marcks mRNA.\",\"authors\":\"Binhao Shi, Jianfei Wang, Jing Zhang, Ji Li, Yancheng Hao, Xianhe Lin, Ren Zhao\",\"doi\":\"10.1007/s12012-024-09945-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic cardiomyopathy (DCM) is a common and severe complication of Diabetes mellitus (DM). Dapagliflozin (DAPA) is an oral anti-diabetic drug worldwide for the treatment of type 2 DM. However, the action and mechanism of DAPA in cardiac fibrosis during DCM remain vague. Primary cardiac fibroblasts (CFs) were incubated with high glucose (HG) in vitro. Cell proliferation was detected by MTT and EdU assays. Oxidative stress was evaluated by determining the production of reactive oxygen species and malondialdehyde. Cell fibrosis was assessed by detecting fibrosis-related proteins by western blotting. Levels of Mettl3 (Methyltransferase 3) and Marcks (myristoylated alanine-rich C kinase substrate) were measured using qRT-PCR and western blotting. The m6A modification profile was determined by methylated RNA immunoprecipitation assay and the interaction between Mettl3 and Marcks was verified using dual-luciferase reporter and RIP assays. DAPA treatment alleviated HG-induced proliferation, oxidative stress, and fibrosis in CFs. HG promoted the expression of Mettl3 in CFs. Knockdown of Mettl3 reversed HG-induced proliferation, oxidative stress, and fibrosis in CFs; moreover, forced expression of Mettl3 abolished the protective effects of DAPA on CFs under HG condition. Mechanistically, Mettl3 interacted with Marcks in CFs and induced Marcks mRNA m6A modification. HG induced high expression of Marcks in CFs. The overexpression of Marcks could counteract DAPA or Mettl3 knockdown-evoked inhibitory effects on CF proliferation, oxidative stress, and fibrosis under HG condition. Dapagliflozin suppressed HG-induced proliferation, oxidative stress, and fibrosis by reducing Mettl3-induced m6A modification in Marcks mRNA.</p>\",\"PeriodicalId\":9570,\"journal\":{\"name\":\"Cardiovascular Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12012-024-09945-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12012-024-09945-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病心肌病(DCM)是糖尿病(DM)常见的严重并发症。达帕格列净(DAPA)是一种全球通用的口服抗糖尿病药物,用于治疗2型糖尿病。然而,DAPA对DCM期间心脏纤维化的作用和机制仍然模糊不清。原代心脏成纤维细胞(CFs)与高葡萄糖(HG)体外培养。通过 MTT 和 EdU 试验检测细胞增殖。通过测定活性氧和丙二醛的产生来评估氧化应激。通过 Western 印迹法检测纤维化相关蛋白,评估细胞纤维化情况。采用 qRT-PCR 和 Western 印迹法测定了 Mettl3(甲基转移酶 3)和 Marcks(肉豆蔻酰化富丙氨酸 C 激酶底物)的水平。通过甲基化 RNA 免疫沉淀分析确定了 m6A 修饰概况,并通过双荧光素酶报告和 RIP 分析验证了 Mettl3 和 Marcks 之间的相互作用。DAPA处理减轻了HG诱导的CFs增殖、氧化应激和纤维化。HG促进了Mettl3在CFs中的表达。敲除Mettl3可逆转HG诱导的CFs增殖、氧化应激和纤维化;此外,在HG条件下,强制表达Mettl3可取消DAPA对CFs的保护作用。从机制上看,Mettl3与CFs中的Marcks相互作用,诱导Marcks mRNA m6A修饰。HG 诱导了 Marcks 在 CFs 中的高表达。在HG条件下,Marcks的过表达可以抵消DAPA或Mettl3基因敲除对CF增殖、氧化应激和纤维化的抑制作用。达帕格列净通过减少Mettl3诱导的Marcks mRNA m6A修饰,抑制了HG诱导的增殖、氧化应激和纤维化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dapagliflozin Suppresses High Glucose-Induced Proliferation, Oxidative Stress, and Fibrosis by Reducing Mettl3-Induced m6A Modification in Marcks mRNA.

Diabetic cardiomyopathy (DCM) is a common and severe complication of Diabetes mellitus (DM). Dapagliflozin (DAPA) is an oral anti-diabetic drug worldwide for the treatment of type 2 DM. However, the action and mechanism of DAPA in cardiac fibrosis during DCM remain vague. Primary cardiac fibroblasts (CFs) were incubated with high glucose (HG) in vitro. Cell proliferation was detected by MTT and EdU assays. Oxidative stress was evaluated by determining the production of reactive oxygen species and malondialdehyde. Cell fibrosis was assessed by detecting fibrosis-related proteins by western blotting. Levels of Mettl3 (Methyltransferase 3) and Marcks (myristoylated alanine-rich C kinase substrate) were measured using qRT-PCR and western blotting. The m6A modification profile was determined by methylated RNA immunoprecipitation assay and the interaction between Mettl3 and Marcks was verified using dual-luciferase reporter and RIP assays. DAPA treatment alleviated HG-induced proliferation, oxidative stress, and fibrosis in CFs. HG promoted the expression of Mettl3 in CFs. Knockdown of Mettl3 reversed HG-induced proliferation, oxidative stress, and fibrosis in CFs; moreover, forced expression of Mettl3 abolished the protective effects of DAPA on CFs under HG condition. Mechanistically, Mettl3 interacted with Marcks in CFs and induced Marcks mRNA m6A modification. HG induced high expression of Marcks in CFs. The overexpression of Marcks could counteract DAPA or Mettl3 knockdown-evoked inhibitory effects on CF proliferation, oxidative stress, and fibrosis under HG condition. Dapagliflozin suppressed HG-induced proliferation, oxidative stress, and fibrosis by reducing Mettl3-induced m6A modification in Marcks mRNA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular Toxicology
Cardiovascular Toxicology 医学-毒理学
CiteScore
6.60
自引率
3.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: Cardiovascular Toxicology is the only journal dedicated to publishing contemporary issues, timely reviews, and experimental and clinical data on toxicological aspects of cardiovascular disease. CT publishes papers that will elucidate the effects, molecular mechanisms, and signaling pathways of environmental toxicants on the cardiovascular system. Also covered are the detrimental effects of new cardiovascular drugs, and cardiovascular effects of non-cardiovascular drugs, anti-cancer chemotherapy, and gene therapy. In addition, Cardiovascular Toxicology reports safety and toxicological data on new cardiovascular and non-cardiovascular drugs.
期刊最新文献
Correction: Novel Insights into Causal Effects of Serum Lipids and Apolipoproteins on Cardiovascular Morpho-Functional Phenotypes. Unveiling the Mechanism of Protective Effects of Tanshinone as a New Fighter Against Cardiovascular Diseases: A Systematic Review. Protective Effect of Berberine Nanoparticles Against Cardiotoxic Effects of Arsenic Trioxide. Fasting: A Complex, Double-Edged Blade in the Battle Against Doxorubicin-Induced Cardiotoxicity. Advances in Factors Affecting ALDH2 Activity and its Mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1