Mariangela Pellegrini, Mélodie Parfait, Martin Dres
{"title":"如何通过横膈膜神经刺激来保护横膈膜和肺。","authors":"Mariangela Pellegrini, Mélodie Parfait, Martin Dres","doi":"10.1097/MCC.0000000000001233","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>In the current review, we aim to highlight the evolving evidence on using diaphragm neurostimulation to develop lung and diaphragm protective mechanical ventilation.</p><p><strong>Recent findings: </strong>Positive-pressure ventilation (PPV) causes stress and strain to the lungs which leads to ventilator-induced lung injury (VILI). In addition, PPV is frequently associated with sedatives that induce excessive diaphragm unloading which contributes to ventilator-induced diaphragmatic dysfunction (VIDD). The nonvolitional diaphragmatic contractions entrained by diaphragm neurostimulation generate negative pressure ventilation, which may be a beneficial alternative or complement to PPV. Although well established as a permanent treatment of central apnea syndromes, temporary diaphragm neurostimulation rapidly evolves to prevent and treat VILI and VIDD. Experimental and small clinical studies report comprehensive data showing that diaphragm neurostimulation has the potential to mitigate VIDD and to decrease the stress and strain applied to the lungs.</p><p><strong>Summary: </strong>Scientific interest in temporary diaphragm neurostimulation has dramatically evolved in the last few years. Despite a solid physiological rationale and promising preliminary findings confirming a beneficial effect on the diaphragm and lungs, more studies and further technological advances will be needed to establish optimal standardized settings and lead to clinical implementation and improved outcomes.</p>","PeriodicalId":10851,"journal":{"name":"Current Opinion in Critical Care","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to protect the diaphragm and the lung with diaphragm neurostimulation.\",\"authors\":\"Mariangela Pellegrini, Mélodie Parfait, Martin Dres\",\"doi\":\"10.1097/MCC.0000000000001233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>In the current review, we aim to highlight the evolving evidence on using diaphragm neurostimulation to develop lung and diaphragm protective mechanical ventilation.</p><p><strong>Recent findings: </strong>Positive-pressure ventilation (PPV) causes stress and strain to the lungs which leads to ventilator-induced lung injury (VILI). In addition, PPV is frequently associated with sedatives that induce excessive diaphragm unloading which contributes to ventilator-induced diaphragmatic dysfunction (VIDD). The nonvolitional diaphragmatic contractions entrained by diaphragm neurostimulation generate negative pressure ventilation, which may be a beneficial alternative or complement to PPV. Although well established as a permanent treatment of central apnea syndromes, temporary diaphragm neurostimulation rapidly evolves to prevent and treat VILI and VIDD. Experimental and small clinical studies report comprehensive data showing that diaphragm neurostimulation has the potential to mitigate VIDD and to decrease the stress and strain applied to the lungs.</p><p><strong>Summary: </strong>Scientific interest in temporary diaphragm neurostimulation has dramatically evolved in the last few years. Despite a solid physiological rationale and promising preliminary findings confirming a beneficial effect on the diaphragm and lungs, more studies and further technological advances will be needed to establish optimal standardized settings and lead to clinical implementation and improved outcomes.</p>\",\"PeriodicalId\":10851,\"journal\":{\"name\":\"Current Opinion in Critical Care\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Critical Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MCC.0000000000001233\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Critical Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MCC.0000000000001233","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
How to protect the diaphragm and the lung with diaphragm neurostimulation.
Purpose of review: In the current review, we aim to highlight the evolving evidence on using diaphragm neurostimulation to develop lung and diaphragm protective mechanical ventilation.
Recent findings: Positive-pressure ventilation (PPV) causes stress and strain to the lungs which leads to ventilator-induced lung injury (VILI). In addition, PPV is frequently associated with sedatives that induce excessive diaphragm unloading which contributes to ventilator-induced diaphragmatic dysfunction (VIDD). The nonvolitional diaphragmatic contractions entrained by diaphragm neurostimulation generate negative pressure ventilation, which may be a beneficial alternative or complement to PPV. Although well established as a permanent treatment of central apnea syndromes, temporary diaphragm neurostimulation rapidly evolves to prevent and treat VILI and VIDD. Experimental and small clinical studies report comprehensive data showing that diaphragm neurostimulation has the potential to mitigate VIDD and to decrease the stress and strain applied to the lungs.
Summary: Scientific interest in temporary diaphragm neurostimulation has dramatically evolved in the last few years. Despite a solid physiological rationale and promising preliminary findings confirming a beneficial effect on the diaphragm and lungs, more studies and further technological advances will be needed to establish optimal standardized settings and lead to clinical implementation and improved outcomes.
期刊介绍:
Current Opinion in Critical Care delivers a broad-based perspective on the most recent and most exciting developments in critical care from across the world. Published bimonthly and featuring thirteen key topics – including the respiratory system, neuroscience, trauma and infectious diseases – the journal’s renowned team of guest editors ensure a balanced, expert assessment of the recently published literature in each respective field with insightful editorials and on-the-mark invited reviews.