Sensen Zhu, Liping Su, Mengjie Zhuang, Li Liu, Min Ji, Jingyu Liu, Chenlu Dai, Jinling Xiao, Yaling Guan, Long Yang, Hongwei Pu
{"title":"NEFL调节NRN1介导的线粒体通路,促进二乙酰吗啡诱导的神经元凋亡","authors":"Sensen Zhu, Liping Su, Mengjie Zhuang, Li Liu, Min Ji, Jingyu Liu, Chenlu Dai, Jinling Xiao, Yaling Guan, Long Yang, Hongwei Pu","doi":"10.1007/s12035-024-04629-z","DOIUrl":null,"url":null,"abstract":"<p><p>Diacetylmorphine abuse is a major social problem that jeopardizes the world, and abuse can cause serious neurological disorders. Apoptosis plays an important role in neurological diseases. A previous study by our group found that the brain tissue of diacetylmorphine-addicted rats showed severe vacuole-like degeneration and increased apoptosis, but the exact mechanism has not yet been reported. We used TMT technology to sequence the diseased brain tissue of rats, and selected neurofilament light chain (NEFL) and neuritin (NRN1) as the focus of our research. We explore the possible roles and mechanisms played by both. Based on the construction of apoptotic cell model, we used overexpression/silencing lentiviral vectors to interfere with the expression of NEFL in PC12 cells, and the results suggested that NEFL could regulate NRN1 to affect the apoptosis level. To further understand the specific mechanism, we used transmission electron microscopy to observe the ultrastructure of apoptotic cells, and the results showed that compared with the control group, mitochondria in the model group showed obvious vacuolation as well as expansion, a significant increase in the accumulation of ROS, and a significant decrease in the mitochondrial membrane potential; after overexpression/silencing of NEFL, these changes were found to occur along with the alteration of NEFL expression. In summary, we conclude that diacetylmorphine induces neuronal apoptosis, and the specific mechanism is that NEFL regulates the NRN1-mediated mitochondrial pathway to promote apoptosis.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NEFL Modulates NRN1-Mediated Mitochondrial Pathway to Promote Diacetylmorphine-Induced Neuronal Apoptosis.\",\"authors\":\"Sensen Zhu, Liping Su, Mengjie Zhuang, Li Liu, Min Ji, Jingyu Liu, Chenlu Dai, Jinling Xiao, Yaling Guan, Long Yang, Hongwei Pu\",\"doi\":\"10.1007/s12035-024-04629-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diacetylmorphine abuse is a major social problem that jeopardizes the world, and abuse can cause serious neurological disorders. Apoptosis plays an important role in neurological diseases. A previous study by our group found that the brain tissue of diacetylmorphine-addicted rats showed severe vacuole-like degeneration and increased apoptosis, but the exact mechanism has not yet been reported. We used TMT technology to sequence the diseased brain tissue of rats, and selected neurofilament light chain (NEFL) and neuritin (NRN1) as the focus of our research. We explore the possible roles and mechanisms played by both. Based on the construction of apoptotic cell model, we used overexpression/silencing lentiviral vectors to interfere with the expression of NEFL in PC12 cells, and the results suggested that NEFL could regulate NRN1 to affect the apoptosis level. To further understand the specific mechanism, we used transmission electron microscopy to observe the ultrastructure of apoptotic cells, and the results showed that compared with the control group, mitochondria in the model group showed obvious vacuolation as well as expansion, a significant increase in the accumulation of ROS, and a significant decrease in the mitochondrial membrane potential; after overexpression/silencing of NEFL, these changes were found to occur along with the alteration of NEFL expression. In summary, we conclude that diacetylmorphine induces neuronal apoptosis, and the specific mechanism is that NEFL regulates the NRN1-mediated mitochondrial pathway to promote apoptosis.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-024-04629-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04629-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
NEFL Modulates NRN1-Mediated Mitochondrial Pathway to Promote Diacetylmorphine-Induced Neuronal Apoptosis.
Diacetylmorphine abuse is a major social problem that jeopardizes the world, and abuse can cause serious neurological disorders. Apoptosis plays an important role in neurological diseases. A previous study by our group found that the brain tissue of diacetylmorphine-addicted rats showed severe vacuole-like degeneration and increased apoptosis, but the exact mechanism has not yet been reported. We used TMT technology to sequence the diseased brain tissue of rats, and selected neurofilament light chain (NEFL) and neuritin (NRN1) as the focus of our research. We explore the possible roles and mechanisms played by both. Based on the construction of apoptotic cell model, we used overexpression/silencing lentiviral vectors to interfere with the expression of NEFL in PC12 cells, and the results suggested that NEFL could regulate NRN1 to affect the apoptosis level. To further understand the specific mechanism, we used transmission electron microscopy to observe the ultrastructure of apoptotic cells, and the results showed that compared with the control group, mitochondria in the model group showed obvious vacuolation as well as expansion, a significant increase in the accumulation of ROS, and a significant decrease in the mitochondrial membrane potential; after overexpression/silencing of NEFL, these changes were found to occur along with the alteration of NEFL expression. In summary, we conclude that diacetylmorphine induces neuronal apoptosis, and the specific mechanism is that NEFL regulates the NRN1-mediated mitochondrial pathway to promote apoptosis.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.